论文标题
T-Weyl演算
T-Weyl calculus
论文作者
论文摘要
令$ \ left(w,σ\右)$为符号矢量空间,让$%t:w \ rightarrow w $是满足某些非偏差条件的线性映射。我们在$ W $上定义了Schur乘数$ω_{σ,T} $。对于此乘数,我们将$ω_{σ,t} $ - 表示,并构建$ t $ -weyl calculus,$ \ mathrm {op} _ {σ,t} $,其属性的属性是系统地研究的。
Let $\left( W,σ\right) $ be a symplectic vector space and let $% T:W\rightarrow W$ be a linear map that satisfies a certain condition of non-degeneracy. We define the Schur multiplier $ω_{σ,T}$ on $W$. To this multiplier we associate a $ω_{σ,T}$-representation and and we build the $T$-Weyl calculus, $\mathrm{Op}_{σ,T}$, whose properties are are systematically studied further.