论文标题
中心对原球盘特性的影响
The influence of infall on the properties of protoplanetary discs
论文作者
论文摘要
我们使用1D垂直集成的粘性演化代码进行了$ 50 \,000 $模拟的原始盘的种群合成,其中包括$ 50 \,000美元的仿真,研究了最终恒星质量中的大参数空间。最初的条件和插入位置是根据辐射流动力学种群综合的结果选择的。我们还考虑了基于磁水动力学(MHD)塌陷模拟的不同进口处方,以评估磁场对椎间盘形成的影响。选择INSTAL相的持续时间与观察确定的恒星初始质量功能一致产生出色的质量分布。 我们发现,原球盘在他们的生命的早期就非常庞大。当在整个恒星种群中平均时,圆盘的质量分别为基于流体动力或MHD初始条件的系统的$ \ sim 0.3 $和$ 0.1 \,\ mathrm {m_ \ odot} $。在具有最终恒星质量$ \ sim 1 \,\ mathrm {m_ \ odot} $的系统中,我们找到了$ \ sim 0.7 \,\ mathrm {m_ \ odot} $的圆盘质量,用于`hydro'case和$ \ sim 0.2 \ sim 0.2 \ sim 0.2 \ sim \ mathrm {m mathrm {m_ mathrm {m _ \ odot} $ of the MANT';此外,尽管我们选择了背景粘度$α$ - 参数的高价值$ 10^{ - 2} $,但平均$ \ 5-7 \,\ mathrm {myr} $很长,$ \ 5-7 \,\ mathrm {myr} $。另外,碎片化在使用流体动力云塌陷模拟的系统中很常见,在更大的系统中形成了更多较大质量的碎片。相反,如果盘形成受磁场的限制,则完全抑制了碎裂。
We perform a population synthesis of protoplanetary discs including infall with a total of $50\,000$ simulations using a 1D vertically integrated viscous evolution code, studying a large parameter space in final stellar mass. Initial conditions and infall locations are chosen based on the results from a radiation-hydrodynamic population synthesis of circumstellar discs. We also consider a different infall prescription based on a magnetohydrodynamic (MHD) collapse simulation in order to assess the influence of magnetic fields on disc formation. The duration of the infall phase is chosen to produce a stellar mass distribution in agreement with the observationally determined stellar initial mass function. We find that protoplanetary discs are very massive early in their lives. When averaged over the entire stellar population, the discs have masses of $\sim 0.3$ and $0.1\,\mathrm{M_\odot}$ for systems based on hydrodynamic or MHD initial conditions, respectively. In systems with final stellar mass $\sim 1\,\mathrm{M_\odot}$, we find disc masses of $\sim 0.7\,\mathrm{M_\odot}$ for the `hydro' case and $\sim 0.2\,\mathrm{M_\odot}$ for the `MHD' case at the end of the infall phase. Furthermore, the inferred total disc lifetimes are long, $\approx 5-7\,\mathrm{Myr}$ on average, despite our choice of a high value of $10^{-2}$ for the background viscosity $α$-parameter. In addition, fragmentation is common in systems that are simulated using hydrodynamic cloud collapse, with more fragments of larger mass formed in more massive systems. In contrast, if disc formation is limited by magnetic fields, fragmentation is suppressed entirely.