论文标题
基于机器学习的路径计划改进了漫游者导航(预印版)
Machine Learning Based Path Planning for Improved Rover Navigation (Pre-Print Version)
论文作者
论文摘要
NASA毅力漫游者的基线表面导航软件增强了Autonav(ENAV),分类了漫游者遍历的候选路径列表,然后使用近似清除率评估(ACE)算法来评估最高排名最高的路径是否安全。 ACE对于维持流动站的安全至关重要,但在计算上很昂贵。如果发现路径列表中最有前途的候选人都是不可行的,则ENAV必须继续搜索列表并运行时时间的ACE评估,直到找到可行的路径为止。在本文中,我们提出了两种启发式方法,鉴于漫游者周围的地形高度图,产生的成本估计是在ACE评估之前更有效地对候选路径进行排名。第一个启发式方法使用SOBEL操作员和卷积来整合穿越高梯度地形的成本。第二个启发式方法使用机器学习(ML)模型来预测ACE认为无法转化的领域。我们使用物理模拟来收集ML模型的培训数据,并运行Monte Carlo试验,以量化各种斜坡和岩石分布的各种地形的导航性能。与ENAV的基线性能相比,整合启发式方法可以显着减少ACE评估和每个计划周期的平均计算时间,提高路径效率,并维持或提高成功穿越的速度。在维护原始ACE安全检查的同时,这种针对特定瓶颈的策略提供了一个示例,说明了如何将ML注入行星科学任务和其他关键安全软件中。
Enhanced AutoNav (ENav), the baseline surface navigation software for NASA's Perseverance rover, sorts a list of candidate paths for the rover to traverse, then uses the Approximate Clearance Evaluation (ACE) algorithm to evaluate whether the most highly ranked paths are safe. ACE is crucial for maintaining the safety of the rover, but is computationally expensive. If the most promising candidates in the list of paths are all found to be infeasible, ENav must continue to search the list and run time-consuming ACE evaluations until a feasible path is found. In this paper, we present two heuristics that, given a terrain heightmap around the rover, produce cost estimates that more effectively rank the candidate paths before ACE evaluation. The first heuristic uses Sobel operators and convolution to incorporate the cost of traversing high-gradient terrain. The second heuristic uses a machine learning (ML) model to predict areas that will be deemed untraversable by ACE. We used physics simulations to collect training data for the ML model and to run Monte Carlo trials to quantify navigation performance across a variety of terrains with various slopes and rock distributions. Compared to ENav's baseline performance, integrating the heuristics can lead to a significant reduction in ACE evaluations and average computation time per planning cycle, increase path efficiency, and maintain or improve the rate of successful traverses. This strategy of targeting specific bottlenecks with ML while maintaining the original ACE safety checks provides an example of how ML can be infused into planetary science missions and other safety-critical software.