论文标题

域墙泄漏的集成和开火神经元具有基于形状的可配置激活功能

Domain Wall Leaky Integrate-and-Fire Neurons with Shape-Based Configurable Activation Functions

论文作者

Brigner, Wesley H., Hassan, Naimul, Hu, Xuan, Bennett, Christopher H., Garcia-Sanchez, Felipe, Cui, Can, Velasquez, Alvaro, Marinella, Matthew J., Incorvia, Jean Anne C., Friedman, Joseph S.

论文摘要

互补的金属氧化物半导体(CMOS)设备显示出挥发性特征,并且不适合模拟应用,例如神经形态计算。另一方面,Spintronic设备既具有非易失性和模拟特征,又非常适合神经形态计算。因此,这些新颖的设备位于超越观众人工智能应用的最前沿。但是,大量这些人造神经形态设备仍然需要使用CMO,这降低了系统的效率。为了解决这个问题,我们以前提出了许多不需要CMO进行操作的人造神经元和突触。尽管这些设备比以前的演绎是显着的改进,但它们具有神经网络学习和识别的能力受其内在激活功能的限制。这项工作提出了对这些自旋神经元的修改,该神经元通过控制磁性域壁轨道的形状来实现激活函数的配置。在这项工作中证明了线性和乙状结肠激活功能,可以通过类似的方法扩展该功能,以实现多种激活函数。

Complementary metal oxide semiconductor (CMOS) devices display volatile characteristics, and are not well suited for analog applications such as neuromorphic computing. Spintronic devices, on the other hand, exhibit both non-volatile and analog features, which are well-suited to neuromorphic computing. Consequently, these novel devices are at the forefront of beyond-CMOS artificial intelligence applications. However, a large quantity of these artificial neuromorphic devices still require the use of CMOS, which decreases the efficiency of the system. To resolve this, we have previously proposed a number of artificial neurons and synapses that do not require CMOS for operation. Although these devices are a significant improvement over previous renditions, their ability to enable neural network learning and recognition is limited by their intrinsic activation functions. This work proposes modifications to these spintronic neurons that enable configuration of the activation functions through control of the shape of a magnetic domain wall track. Linear and sigmoidal activation functions are demonstrated in this work, which can be extended through a similar approach to enable a wide variety of activation functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源