论文标题
非对称类$ 2 $的协会方案,通过偏斜 - 哈达玛德矩阵获得的协会方案是非舒里亚人
Non-symmetric class $2$ association schemes obtained by doubling of skew-Hadamard matrices are non-schurian
论文作者
论文摘要
我们可以通过一个偏斜 - 哈达玛德矩阵获得非对称类$ 2 $的关联方案。我们从订单$ n $的偏斜 - 哈达玛德矩阵开始,构建了订单$ 2N $的偏斜 - 哈达玛德矩阵,并通过加倍的构造,而非对称类别的$ 2 $ $ 2 $联想订单计划$ 2N-1 $。我们将证明,如果$ n $大于或等于$ 8 $,以这种方式获得的关联计划永远不会成为Schurian。
We can obtain a non-symmetric class $2$ association scheme by a skew-Hadamard matrix. We begin with a skew-Hadamard matrix of order $n$, construct a skew-Hadamard matrix of order $2n$ by doubling construction, and a non-symmetric class $2$ association scheme of order $2n-1$. We will show that the association scheme obtained in this way never be schurian if $n$ is greater than or equal to $8$.