论文标题

确定差异隐私计划的准确性

Deciding Accuracy of Differential Privacy Schemes

论文作者

Barthe, Gilles, Chadha, Rohit, Krogmeier, Paul, Sistla, A. Prasad, Viswanathan, Mahesh

论文摘要

差异隐私是一个数学框架,用于开发具有隐私和准确性的可证明保证的统计计算。与具有清晰的数学和直观含义的差异隐私的隐私组成部分相反,差异隐私的准确性组成部分没有公认的定义。差异隐私算法的准确性主张从算法到算法不等,并且不是一般定义的实例化。我们将程序的不连续性确定为现有\ emph {ad hoc}定义中的一个共同主题,并引入了由我们所谓的{\ dymand}参数的替代准确性概念,即{\ distaim} - 输入$ x $ x $ x $ x $ w.r.t.的{\ distair} $ f(y)\ neq f(x)$。我们表明,我们的准确性概念涵盖了理论计算机科学中使用的定义,并捕获了差异隐私算法的已知准确性主张。实际上,我们的一般准确概念在某些情况下有助于我们证明更好的主张。接下来,我们研究准确性的可决定性。我们首先表明准确性通常是不可决定的。然后,我们定义了一类非平凡的概率计算,其准确性是可决定的(无条件或假定Schanuel的猜想)。我们实施决策程序,并通过实验评估我们的方法的有效性,以生成文献中常见算法准确性的证明或反示例。

Differential privacy is a mathematical framework for developing statistical computations with provable guarantees of privacy and accuracy. In contrast to the privacy component of differential privacy, which has a clear mathematical and intuitive meaning, the accuracy component of differential privacy does not have a generally accepted definition; accuracy claims of differential privacy algorithms vary from algorithm to algorithm and are not instantiations of a general definition. We identify program discontinuity as a common theme in existing \emph{ad hoc} definitions and introduce an alternative notion of accuracy parametrized by, what we call, {\distance} -- the {\distance} of an input $x$ w.r.t., a deterministic computation $f$ and a distance $d$, is the minimal distance $d(x,y)$ over all $y$ such that $f(y)\neq f(x)$. We show that our notion of accuracy subsumes the definition used in theoretical computer science, and captures known accuracy claims for differential privacy algorithms. In fact, our general notion of accuracy helps us prove better claims in some cases. Next, we study the decidability of accuracy. We first show that accuracy is in general undecidable. Then, we define a non-trivial class of probabilistic computations for which accuracy is decidable (unconditionally, or assuming Schanuel's conjecture). We implement our decision procedure and experimentally evaluate the effectiveness of our approach for generating proofs or counterexamples of accuracy for common algorithms from the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源