论文标题
单极和偶性放松在旋转冰中
Monopolar and dipolar relaxation in spin ice Ho$_2$Ti$_2$O$_7$
论文作者
论文摘要
当退化状态被大型能屏障隔开时,热平衡的方法可以慢得足以使物理特性通过热化过程定义而不是平衡来定义。热化的探索推动了实验界限,并提供了对原子量表相关性和过程的清新见解,从而影响稳态动力学和实现固态量子纠缠的前景。我们对HO $ _2 $ ti $ _2 $ o $ _7 $ ho磁松弛的全面研究基于频率依赖性的敏感性测量和对场淬灭的实时原子级响应的中子衍射研究。这些实验涵盖了将近十年的时间尺度,发现了在不同温度方案中占主导地位的两个不同的弛豫过程。在低温下(0.6K <t <1k),磁性松弛与沿施加的磁场方向通过自旋冰球真空的单极运动有关。冷却时的松弛时间增加表明,单极电导率降低,因为单极浓度和迁移率降低,如半导体中。在较高的温度(1K <t <2k)下,随着系统接近单旋转隧道状态,磁弛豫与单极结合状态的重新定向有关。因此,在弛豫动力学中直接暴露了自旋分数化。
When degenerate states are separated by large energy barriers, the approach to thermal equilibrium can be slow enough that physical properties are defined by the thermalization process rather than the equilibrium. The exploration of thermalization pushes experimental boundaries and provides refreshing insights into atomic scale correlations and processes that impact steady state dynamics and prospects for realizing solid state quantum entanglement. We present a comprehensive study of magnetic relaxation in Ho$_2$Ti$_2$O$_7$ based on frequency-dependent susceptibility measurements and neutron diffraction studies of the real-time atomic-scale response to field quenches. Covering nearly ten decades in time scales, these experiments uncover two distinct relaxation processes that dominate in different temperature regimes. At low temperatures (0.6K<T<1K) magnetic relaxation is associated with monopole motion along the applied field direction through the spin-ice vacuum. The increase of the relaxation time upon cooling indicates reduced monopole conductivity driven by decreasing monopole concentration and mobility as in a semiconductor. At higher temperatures (1K<T<2K) magnetic relaxation is associated with the reorientation of monopolar bound states as the system approaches the single-spin tunneling regime. Spin fractionalization is thus directly exposed in the relaxation dynamics.