论文标题

麸皮,箭弹和波动

Branes, quivers and wave-functions

论文作者

Kimura, Taro, Panfil, Miłosz, Sugimoto, Yuji, Sułkowski, Piotr

论文摘要

我们考虑了非周期性和周期性的曲曲面几何形状中的一大型晶体。对于固定的背景几何形状,我们表明,可以将这种麸皮的分区函数重新解释为颤抖的生成序列,另一方面可以作为各种极化中的波浪函数。我们确定对Quivers的操作,以及$ SL(2,\ Mathbb {Z})$转换,这对应于这些麸皮的变化位置。我们的结果证明了与这类麸皮相关的BPS多重性的完整性,揭示了它们如何在极化变化下转化,也暗示了从与Quivers的关系之后的Brane振幅的所有其他属性。

We consider a large class of branes in toric strip geometries, both non-periodic and periodic ones. For a fixed background geometry we show that partition functions for such branes can be reinterpreted, on one hand, as quiver generating series, and on the other hand as wave-functions in various polarizations. We determine operations on quivers, as well as $SL(2,\mathbb{Z})$ transformations, which correspond to changing positions of these branes. Our results prove integrality of BPS multiplicities associated to this class of branes, reveal how they transform under changes of polarization, and imply all other properties of brane amplitudes that follow from the relation to quivers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源