论文标题
构图真相,命题重言式和无量词的正确性
Compositional truth with propositional tautologies and quantifier-free correctness
论文作者
论文摘要
Cieśliński问,与Peano算术相对于Peano Arithmetic的构成真理理论是否具有额外的公理性是保守的。我们为这个问题提供了部分答案,表明,如果我们还假设真理谓词在无量词的句子上与算术真相一致,则结果理论与$δ_0$诱导的构图真相谓词一样强,因此,不保守。另一方面,可以用一个例行的论点来表明,无量词正确性的原理本身是保守的。
Cieśliński asked whether compositional truth theory with the additional axiom that all propositional tautologies are true is conservative over Peano Arithmetic. We provide a partial answer to this question, showing that if we additionally assume that truth predicate agrees with arithmetical truth on quantifier-free sentences, the resulting theory is as strong as $Δ_0$-induction for the compositional truth predicate, hence non-conservative. On the other hand, it can be shown with a routine argument that the principle of quantifier-free correctness is itself conservative.