论文标题

用于比较算法的熵保护

Entropy conservation for comparison-based algorithms

论文作者

Schellekens, Michel

论文摘要

基于比较的算法是算法,每个操作的执行仅基于元素之间一系列比较的结果。基于比较的计算可以通过以下计算模型自然表示:(a)模型数据结构作为部分订购的有限集; (b)通过拓扑类型的模型数据; (c)将计算状态视为此类数据的有限多集; (d)通过其诱导的状态转换表示计算。在这种观点中,分类算法的抽象规范具有任何有限元素的任何可能置换率(根据(a)和(b)表示,由离散的部分分别订购的设置以及所有置换率给出的拓扑类别)和输出状态列表(代表)唯一的元素(根据(A)和(a)和(b)和(b)和(b)和(b)和(b)的固定列表 - 熵是“随机性”或“无序”的量度。基于计算模型,我们引入了基于比较的算法的熵保护结果:“获得的定量顺序与丢失的位置顺序成正比。”凭直觉,结果与凌乱的办公室论点有一定的关系,主张一个混乱的办公室,在正确的位置,所有者的位置都不知道,但在每个物品以正确的订单存储的情况下,所有者都无法找到这些物品。正式地,我们将结果推广到可通过串联平行部分订单表示的数据结构类别(一个众所周知的计算典型类别)。熵保护的结果“表示”版本将在后续工作中扩展到我们计算模型的核心部分的“操作”版本。

Comparison-based algorithms are algorithms for which the execution of each operation is solely based on the outcome of a series of comparisons between elements. Comparison-based computations can be naturally represented via the following computational model: (a) model data structures as partially-ordered finite sets; (b) model data on these by topological sorts; (c) considering computation states as finite multisets of such data; (d) represent computations by their induced transformations on states. In this view, an abstract specification of a sorting algorithm has input state given by any possible permutation of a finite set of elements (represented, according to (a) and (b), by a discrete partially-ordered set together with its topological sorts given by all permutations) and output state a sorted list of elements (represented, again according to (a) and (b), by a linearly-ordered finite set with its unique topological sort). Entropy is a measure of "randomness" or "disorder." Based on the computational model, we introduce an entropy conservation result for comparison-based algorithms: "quantitative order gained is proportional to positional order lost." Intuitively, the result bears some relation to the messy office argument advocating a chaotic office where nothing is in the right place yet each item's place is known to the owner, over the case where each item is stored in the right order and yet the owner can no longer locate the items. Formally, we generalize the result to the class of data structures representable via series-parallel partial orders--a well-known computationally tractable class. The resulting "denotational" version of entropy conservation will be extended in follow-up work to an "operational" version for a core part of our computational model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源