论文标题

一种自主方法,用于衡量在公共开放空间中的共同距离19期间大流行期间社会距离和卫生实践

An Autonomous Approach to Measure Social Distances and Hygienic Practices during COVID-19 Pandemic in Public Open Spaces

论文作者

Sun, Peng, Draughon, Gabriel, Lynch, Jerome

论文摘要

自2019年底以来,冠状病毒一直在世界各地传播。该病毒会引起急性呼吸综合征,这可能是致命的,并且很容易在宿主之间传播。大多数州都发布了全家执行命令,但是,公园和其他公共开放空间在很大程度上保持开放,并看到公众使用的急剧增加。因此,为了确保公共安全,公众开放空间的顾客必须采取安全卫生并采取预防措施。这项工作提供了一种可扩展的感应方法,可检测公共开放空间内的体育活动,并监测美国疾病控制与预防中心(CDC)建议的社会疏远指南。基于深度学习的计算机视觉传感框架旨在研究使用预安装的监视摄像机网络中的视频提要来调查具有硬表面(例如长凳,栅栏和垃圾桶)的公园和公园设施的仔细,适当利用。传感框架由基于CNN的对象检测器,多目标跟踪器,映射模块和组推理模块组成。这些实验是在2020年3月至2020年5月在密歇根州底特律底特律河滨公园的几个关键地点之间在1920年3月至2020年5月之间的共同大流行期间进行的。通过将自动传感结果与手动标记的地面真实结果进行比较,可以验证传感框架。拟议的方法可以大大提高通过为联邦和州机构创建直接的数据可视化来提供公共空间中用户的空间和时间统计的效率。结果还可以为令人震惊的或执行器系统提供准时触发信息,以后可以在此大流行期间添加以干预不适当的行为。

Coronavirus has been spreading around the world since the end of 2019. The virus can cause acute respiratory syndrome, which can be lethal, and is easily transmitted between hosts. Most states have issued state-at-home executive orders, however, parks and other public open spaces have largely remained open and are seeing sharp increases in public use. Therefore, in order to ensure public safety, it is imperative for patrons of public open spaces to practice safe hygiene and take preventative measures. This work provides a scalable sensing approach to detect physical activities within public open spaces and monitor adherence to social distancing guidelines suggested by the US Centers for Disease Control and Prevention (CDC). A deep learning-based computer vision sensing framework is designed to investigate the careful and proper utilization of parks and park facilities with hard surfaces (e.g. benches, fence poles, and trash cans) using video feeds from a pre-installed surveillance camera network. The sensing framework consists of a CNN-based object detector, a multi-target tracker, a mapping module, and a group reasoning module. The experiments are carried out during the COVID-19 pandemic between March 2020 and May 2020 across several key locations at the Detroit Riverfront Parks in Detroit, Michigan. The sensing framework is validated by comparing automatic sensing results with manually labeled ground-truth results. The proposed approach significantly improves the efficiency of providing spatial and temporal statistics of users in public open spaces by creating straightforward data visualizations for federal and state agencies. The results can also provide on-time triggering information for an alarming or actuator system which can later be added to intervene inappropriate behavior during this pandemic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源