论文标题
通过重组重新配置连接的图形分区
Reconfiguration of Connected Graph Partitions via Recombination
论文作者
论文摘要
由GerryMandering检测中的应用程序的激励,我们研究了连接图形$ G $的连接分区的重新配置问题。如果每个部分都诱导连接的子图,则$ v(g)$的分区为\ emph {connected}。在许多应用中,希望获得大致相同的部分,可能会带有一些松弛的$ S $。 a \ emph {平衡连接的$ k $ - 与松弛$ s $}的分区,表示为\ emph {$(k,s)$ - $ - bcp},是$ v(g)$的分区,分为$ k $ k $ nonnoppty子集,尺寸$ n_1,n_1,n_k $ n_k $ n_k $ n_i-n_i-k | s $ s $ | (当$ s = 0 $时,$ k $零件是完美平衡的,我们称之为\ emph {$ k $ -bcp},简称)。 A \ Emph {重组}是一个操作,该操作采用$(k,s)$ -BCP的图$ g $,并通过合并两个相邻子图并重新分配它们来生产另一个。给定两个$ k $ -bcps,$ a $和$ b $,$ g $和a slack $ s \ geq 0 $,我们希望通过$(k,s)$ -BCPS确定是否存在将$ a $ a $ a $ a $ a $ a $ a $ bcps转换为$ b $的顺序。我们获得了与此问题有关的四个结果:(1)当$ S $无限制时,最多可以使用$ 6(k-1)$重组的转换。 (2)如果$ g $是汉密尔顿人,则可以使用任何$ s \ ge n/k $重组$ o(kn)$重组,并且(3)我们提供$ s \ leq n/(3k)$的负面实例。 (4)我们表明,当$ k \ in O(n^{\ varepsilon})$和$ s \ in o(n^{1- \ varepsilon})$时,问题是pspace complete平面。
Motivated by applications in gerrymandering detection, we study a reconfiguration problem on connected partitions of a connected graph $G$. A partition of $V(G)$ is \emph{connected} if every part induces a connected subgraph. In many applications, it is desirable to obtain parts of roughly the same size, possibly with some slack $s$. A \emph{Balanced Connected $k$-Partition with slack $s$}, denoted \emph{$(k,s)$-BCP}, is a partition of $V(G)$ into $k$ nonempty subsets, of sizes $n_1,\ldots , n_k$ with $|n_i-n/k|\leq s$, each of which induces a connected subgraph (when $s=0$, the $k$ parts are perfectly balanced, and we call it \emph{$k$-BCP} for short). A \emph{recombination} is an operation that takes a $(k,s)$-BCP of a graph $G$ and produces another by merging two adjacent subgraphs and repartitioning them. Given two $k$-BCPs, $A$ and $B$, of $G$ and a slack $s\geq 0$, we wish to determine whether there exists a sequence of recombinations that transform $A$ into $B$ via $(k,s)$-BCPs. We obtain four results related to this problem: (1) When $s$ is unbounded, the transformation is always possible using at most $6(k-1)$ recombinations. (2) If $G$ is Hamiltonian, the transformation is possible using $O(kn)$ recombinations for any $s \ge n/k$, and (3) we provide negative instances for $s \leq n/(3k)$. (4) We show that the problem is PSPACE-complete when $k \in O(n^{\varepsilon})$ and $s \in O(n^{1-\varepsilon})$, for any constant $0 < \varepsilon \le 1$, even for restricted settings such as when $G$ is an edge-maximal planar graph or when $k=3$ and $G$ is planar.