论文标题
量子$ k $ - 感谢您的曲折品种,水平结构和3D镜像对称性的理论
Quantum $K$-theory of toric varieties, level structures, and 3d mirror symmetry
论文作者
论文摘要
我们引入了一个新版本的3D镜子对称性,用于复曲面堆栈,灵感来自3D $ \ MATHCAL {n} = 2 $ Abelian Mirror Symmetry in Physics中的构造。鉴于一些曲折的数据,我们介绍了$ k $ - 理论$ i $ $ $ $ $ $ $ $ $ $ $ $ $ $,具有有效的层次结构。当选择特定的稳定性条件时,它将限制在特定的Etric Git商的$ i $ function中。感谢您的镜头由原始复的数据的大风双重定义。然后,我们证明了镜子对镜对的$ i $ functions在镜像映射下重合的$ i $符合,该镜像是切换kähler和ecurivariant参数的,以及地图$ q \ q \ mapsto q^{ - 1} $。
We introduce a new version of 3d mirror symmetry for toric stacks, inspired by a 3d $\mathcal{N} = 2$ abelian mirror symmetry construction in physics. Given some toric data, we introduce the $K$-theoretic $I$-function with effective level structure for the associated toric stack. When a particular stability condition is chosen, it restricts to the $I$-function for the particular toric GIT quotient. The mirror of a toric stack is defined by the Gale dual of the original toric data. We then proved the mirror conjecture that the $I$-functions of a mirror pair coincide, under the mirror map, which switches Kähler and equivariant parameters, and maps $q\mapsto q^{-1}$.