论文标题
PIX2Streams:卫星 - LIDAR FUSION的动态水文图
Pix2Streams: Dynamic Hydrology Maps from Satellite-LiDAR Fusion
论文作者
论文摘要
地球的溪流现在在哪里流动?内陆地表水随洪水扩大并与干旱收缩,因此我们的溪流没有一个地图。当前的卫星方法仅限于仅绘制最宽流的每月观察。这些是由构成树突状表面网络的大部分但没有观察到的较小的支流喂养的。我们日常水域的完整地图可以给我们预警,以便警告干旱的诞生:流动网络的退缩技巧。在多年来绘制它们可以为我们提供一张无常水域的地图,显示在哪里期望水以及不在哪里。为此,我们将最新的高分辨率传感器数据馈送到多个深度学习模型中,以每天绘制这些流动的网络,从而堆叠多年来的时代系列地图。具体而言,i)我们将水分分割提高到$ 50 $ cm/像素分辨率,比以前的最先前的结果改善了60美元$ \ times $。我们在30-40cm WorldView3图像上接受训练的U-NET可以检测到狭窄的流高达1-3m(30-60 $ \ times $远比SOTA)。我们的多传感器,多分辨率变体Wassernetz将3M Planetscope Imagery的多日窗口与1M LiDAR数据融合在一起,以检测5-7m宽的流。两个U网络都在像素级别上产生水概率图。 ii)我们在DEM衍生的合成谷网络图上集成了此水图,以在流级上产生流量的快照。 iii)我们将这条管道(我们称为Pix2Streams)应用于美国三个流域的每日2年的Planetscope时间序列,以产生第一个高保真动态图流量的高保真动态图。最终结果是一张新地图,如果在国家规模上应用,可以从根本上改善我们如何管理世界各地的水资源。
Where are the Earth's streams flowing right now? Inland surface waters expand with floods and contract with droughts, so there is no one map of our streams. Current satellite approaches are limited to monthly observations that map only the widest streams. These are fed by smaller tributaries that make up much of the dendritic surface network but whose flow is unobserved. A complete map of our daily waters can give us an early warning for where droughts are born: the receding tips of the flowing network. Mapping them over years can give us a map of impermanence of our waters, showing where to expect water, and where not to. To that end, we feed the latest high-res sensor data to multiple deep learning models in order to map these flowing networks every day, stacking the times series maps over many years. Specifically, i) we enhance water segmentation to $50$ cm/pixel resolution, a 60$\times$ improvement over previous state-of-the-art results. Our U-Net trained on 30-40cm WorldView3 images can detect streams as narrow as 1-3m (30-60$\times$ over SOTA). Our multi-sensor, multi-res variant, WasserNetz, fuses a multi-day window of 3m PlanetScope imagery with 1m LiDAR data, to detect streams 5-7m wide. Both U-Nets produce a water probability map at the pixel-level. ii) We integrate this water map over a DEM-derived synthetic valley network map to produce a snapshot of flow at the stream level. iii) We apply this pipeline, which we call Pix2Streams, to a 2-year daily PlanetScope time-series of three watersheds in the US to produce the first high-fidelity dynamic map of stream flow frequency. The end result is a new map that, if applied at the national scale, could fundamentally improve how we manage our water resources around the world.