论文标题
带有旋转的突触的射频多重和振作型操作
Radio-Frequency Multiply-And-Accumulate Operations with Spintronic Synapses
论文作者
论文摘要
利用纳米电子设备的物理学是实施紧凑,快速和节能的人工智能的主要领导。在这项工作中,我们提出了一条朝这个方向的原始道路,在该方向上,用作人造突触的自旋共振器组合可以直接直接对AN-Alogue射频信号进行分类,而无需数字化。谐振器通过自旋二极管效应将RA-DIO频率输入信号转换为直接电压。在此过程中,它们将输入信号乘以突触重量,这取决于其共振频率。我们通过从实验设备中提取的参数通过物理模拟进行了证明,谐振器的频率 - 磁性组件实现了人工神经网络的转角操作,即在微波输入上直接在微波炉输入上进行多重和积累(MAC)。结果表明,即使有了非理想的现实模型,使用我们的体系结构获得的输出仍然与传统的MAC操作相媲美。我们与一个传统的机器学习框架增强了描述自旋谐振器物理的方程式,我们训练一个单层神经网络,以对编码8x8 Pixel手写数字图片的射电质量信号进行分类。 Spintronic神经网络的精度为99.96%,相当于纯软件神经网络工作。该MAC实施为快速,低功率的无线电分类应用程序提供了有希望的解决方案,以及用于Spintronic Deep Deep Deep Net-works的新构建块。
Exploiting the physics of nanoelectronic devices is a major lead for implementing compact, fast, and energy efficient artificial intelligence. In this work, we propose an original road in this direction, where assemblies of spintronic resonators used as artificial synapses can classify an-alogue radio-frequency signals directly without digitalization. The resonators convert the ra-dio-frequency input signals into direct voltages through the spin-diode effect. In the process, they multiply the input signals by a synaptic weight, which depends on their resonance fre-quency. We demonstrate through physical simulations with parameters extracted from exper-imental devices that frequency-multiplexed assemblies of resonators implement the corner-stone operation of artificial neural networks, the Multiply-And-Accumulate (MAC), directly on microwave inputs. The results show that even with a non-ideal realistic model, the outputs obtained with our architecture remain comparable to that of a traditional MAC operation. Us-ing a conventional machine learning framework augmented with equations describing the physics of spintronic resonators, we train a single layer neural network to classify radio-fre-quency signals encoding 8x8 pixel handwritten digits pictures. The spintronic neural network recognizes the digits with an accuracy of 99.96 %, equivalent to purely software neural net-works. This MAC implementation offers a promising solution for fast, low-power radio-fre-quency classification applications, and a new building block for spintronic deep neural net-works.