论文标题
双曲线浅水矩方程的平衡稳定性分析
Equilibrium Stability Analysis of Hyperbolic Shallow Water Moment Equations
论文作者
论文摘要
在本文中,我们分析双曲线浅水矩方程的平衡歧管的稳定性。浅水矩方程描述了复杂速度曲线的浅流,这些速度曲线在垂直方向上有所不同,模型可以看作是标准浅水方程的扩展。平衡稳定性是平衡定律的重要特性,它决定了在平衡歧管附近解决方案的线性稳定性,并且被视为稳定数值溶液的必要条件。在对模型的双曲结构进行了分析之后,我们根据右侧摩擦项的三个不同限制确定了三个不同的稳定性歧管,它们物理上对应于静水,恒定速度,恒定速度和底部速度速度曲线。然后,稳定性分析表明,对于水平平衡和恒定速度平衡,结构稳定性条件是满足的。但是,根据速度曲线,最底部的平衡可能会导致稳定的模式。对于不同模型,研究了针对各个平衡歧管的松弛。
In this paper we analyze the stability of equilibrium manifolds of hyperbolic shallow water moment equations. Shallow water moment equations describe shallow flows for complex velocity profiles which vary in vertical direction and the models can be seen as extensions of the standard shallow water equations. Equilibrium stability is an important property of balance laws that determines the linear stability of solutions in the vicinity of equilibrium manifolds and it is seen as a necessary condition for stable numerical solutions. After an analysis of the hyperbolic structure of the models, we identify three different stability manifolds based on three different limits of the right-hand side friction term, which physically correspond to water-at-rest, constant-velocity, and bottom-at-rest velocity profiles. The stability analysis then shows that the structural stability conditions are fulfilled for the water-at-rest equilibrium and the constant-velocity equilibrium. However, the bottom-at-rest equilibrium can lead to instable modes depending on the velocity profile. Relaxation towards the respective equilibrium manifolds is investigated numerically for different models.