论文标题
Wilson Loops相关器中的缺陷$ \ Mathcal {n} = 4 $ sym
Wilson loops correlators in defect $\mathcal{N}=4$ SYM
论文作者
论文摘要
我们考虑了两个同心圆形的Wilson环的相关器,具有相等半径的两个同心圆形环路,用于在$ \ Mathcal {n} = 4 $ sym的缺陷版本中,在强耦合中进行任意空间和内部分离。与连接和断开的最小表面之间的标准总体环境相变相比,由于缺陷的存在,鞍点的更复杂模式有助于两圈相关器。我们分析了不同种类的最小表面之间的过渡及其对设置众多参数的依赖性。
We consider the correlator of two concentric circular Wilson loops with equal radii for arbitrary spatial and internal separation at strong coupling within a defect version of $\mathcal{N}=4$ SYM. Compared to the standard Gross-Ooguri phase transition between connected and disconnected minimal surfaces, a more complicated pattern of saddle-points contributes to the two-circles correlator due to the defect's presence. We analyze the transitions between different kinds of minimal surfaces and their dependence on the setting's numerous parameters.