论文标题

深网,用于低SNR的到达方向估计

Deep Networks for Direction-of-Arrival Estimation in Low SNR

论文作者

Papageorgiou, Georgios K., Sellathurai, Mathini, Eldar, Yonina C.

论文摘要

在这项工作中,我们考虑使用深度学习(DL)在存在极端噪声的情况下考虑到达方向(DOA)。特别是,我们引入了一个卷积神经网络(CNN),该网络是根据真阵列歧管矩阵的mutli渠道数据训练的,并能够使用样品协方差估算来预测角方向。我们将问题建模为一项多标签分类任务,并在低SNR制度中训练CNN,以预测所有SNR的DOA。所提出的结构表明,在存在噪声的情况下,鲁棒性增强,以及对少量快照的弹性。此外,它能够在网格分辨率中解析角度。实验结果表明,与最先进的方法相比,低SNR状态的性能显着,而无需任何参数调整。我们放松了以下假设:源数是先验的,并提出了一种训练方法,在该方法中,CNN学会了与DOA共同推断来源的数量。仿真结果表明,所提出的CNN可以准确地估计低SNR中的离网角,与此同时,对于足够数量的快照,可以成功地推断出来源的数量。我们的强大解决方案可以应用于几个领域,从无线阵列传感器到声学麦克风或声纳。

In this work, we consider direction-of-arrival (DoA) estimation in the presence of extreme noise using Deep Learning (DL). In particular, we introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix and is able to predict angular directions using the sample covariance estimate. We model the problem as a multi-label classification task and train a CNN in the low-SNR regime to predict DoAs across all SNRs. The proposed architecture demonstrates enhanced robustness in the presence of noise, and resilience to a small number of snapshots. Moreover, it is able to resolve angles within the grid resolution. Experimental results demonstrate significant performance gains in the low-SNR regime compared to state-of-the-art methods and without the requirement of any parameter tuning. We relax the assumption that the number of sources is known a priori and present a training method, where the CNN learns to infer the number of sources jointly with the DoAs. Simulation results demonstrate that the proposed CNN can accurately estimate off-grid angles in low SNR, while at the same time the number of sources is successfully inferred for a sufficient number of snapshots. Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源