论文标题

矩阵变化时间序列的双向转换因子模型

A Two-Way Transformed Factor Model for Matrix-Variate Time Series

论文作者

Gao, Zhaoxing, Tsay, Ruey S.

论文摘要

我们提出了一个新的框架,用于通过双向转换对高维矩阵变化时间序列进行建模,其中转换的数据由矩阵变差因子过程组成,该过程是动态依赖的,还有其他三个白色噪声块。具体来说,对于给定的$ P_1 \ times P_2 $矩阵变化时间序列,我们寻求常见的非构造转换,将行和列投影到另一个$ p_1 $和$ p_2 $方向上,并根据该系列对过去值的动态依赖的强度。因此,我们将数据视为非主流线性行和动态依赖性共同因素和白噪声特质组件的列转换。我们提出了一种常见的正规投影方法,以估计基质变量因子的前后载荷矩阵。在以下设置的情况下,矢量化特质术语的协方差的最大特征值大$ $ $ p_1 $和$ p_2 $,我们引入了一个双向投影的主成分分析(PCA),以估算相关的负载矩阵,以减轻这种分解差异噪声效应。提出了对角路径的白噪声测试程序,以估计因子矩阵的顺序。在假设特质项是矩阵变化的白噪声过程的假设下。随着样本量增加到无穷大的增加,为固定和不同的维度建立了所提出方法的渐近特性。我们使用模拟和真实示例来评估所提出的方法的性能。我们还将我们的方法与文献中现有的方法进行了比较,发现所提出的方法不仅提供了可解释的结果,而且在样本外预测中表现良好。

We propose a new framework for modeling high-dimensional matrix-variate time series by a two-way transformation, where the transformed data consist of a matrix-variate factor process, which is dynamically dependent, and three other blocks of white noises. Specifically, for a given $p_1\times p_2$ matrix-variate time series, we seek common nonsingular transformations to project the rows and columns onto another $p_1$ and $p_2$ directions according to the strength of the dynamic dependence of the series on the past values. Consequently, we treat the data as nonsingular linear row and column transformations of dynamically dependent common factors and white noise idiosyncratic components. We propose a common orthonormal projection method to estimate the front and back loading matrices of the matrix-variate factors. Under the setting that the largest eigenvalues of the covariance of the vectorized idiosyncratic term diverge for large $p_1$ and $p_2$, we introduce a two-way projected Principal Component Analysis (PCA) to estimate the associated loading matrices of the idiosyncratic terms to mitigate such diverging noise effects. A diagonal-path white noise testing procedure is proposed to estimate the order of the factor matrix. %under the assumption that the idiosyncratic term is a matrix-variate white noise process. Asymptotic properties of the proposed method are established for both fixed and diverging dimensions as the sample size increases to infinity. We use simulated and real examples to assess the performance of the proposed method. We also compare our method with some existing ones in the literature and find that the proposed approach not only provides interpretable results but also performs well in out-of-sample forecasting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源