论文标题
3D网格注意网络可解释的年龄和阿尔茨海默氏病的结构MRI预测
3D Grid-Attention Networks for Interpretable Age and Alzheimer's Disease Prediction from Structural MRI
论文作者
论文摘要
我们提出了一个可解释的3D网格注意的深神经网络,该网络可以准确预测一个人的年龄,以及他们是否通过结构性大脑MRI扫描患阿尔茨海默氏病(AD)。在3D卷积神经网络的基础上,我们在不同的抽象层上添加了两个注意模块,因此所学习的功能在空间上与任务的全局功能相关。注意力层使网络可以专注于与任务相关的大脑区域,同时掩盖了无关紧要或嘈杂的区域。在基于4,561个3-TESLA T1加权的MRI扫描的评估中,来自阿尔茨海默氏病神经影像学计划(ADNI)的4个阶段(ADNI),年龄的显着图和AD预测的显着图部分重叠,但低级别的特征与高级特征重叠。大脑年龄预测网络还比另一种最先进的方法更好地区分AD和健康对照组。所得的视觉分析可以区分可解释的特征模式,这些模式对于预测临床诊断很重要。需要未来的工作来测试扫描仪和人群的性能。
We propose an interpretable 3D Grid-Attention deep neural network that can accurately predict a person's age and whether they have Alzheimer's disease (AD) from a structural brain MRI scan. Building on a 3D convolutional neural network, we added two attention modules at different layers of abstraction, so that features learned are spatially related to the global features for the task. The attention layers allow the network to focus on brain regions relevant to the task, while masking out irrelevant or noisy regions. In evaluations based on 4,561 3-Tesla T1-weighted MRI scans from 4 phases of the Alzheimer's Disease Neuroimaging Initiative (ADNI), salience maps for age and AD prediction partially overlapped, but lower-level features overlapped more than higher-level features. The brain age prediction network also distinguished AD and healthy control groups better than another state-of-the-art method. The resulting visual analyses can distinguish interpretable feature patterns that are important for predicting clinical diagnosis. Future work is needed to test performance across scanners and populations.