论文标题

数字半群的布奇威兹集

The Buchweitz set of a numerical semigroup

论文作者

Eliahou, S., García-García, J. I., Marín-Aragón, D., Vigneron-Tenorio, A.

论文摘要

令$ a \ subset {\ mathbb z} $为有限子集。我们用$ \ Mathcal {b}(a)$ $整数的集合$ n \ ge 2 $,这样$ | na | >(2n-1)(| a | -1)$,其中$ na = a+\ cdots+a $表示$ n $ fold $ a $ a $。考虑$ \ MATHCAL {B}(A)$的动机来自1980年Buchweitz的发现,如果数值半群$ S \ subseteq {\ Mathbb n} $是Weierstrass Semigroup,则是$ \ m nathcal {b}(b}(b}(\ Mathbb n} \ set $ setmins s)通过构建这种情况失败的实例,布赫威茨(Buchweitz)反驳了Hurwitz(1893)的长期猜想。在本文中,我们证明,对于任何数字半群$ s \ subset {\ mathbb n} $属的$ g \ ge 2 $,set $ \ mathcal {b}({\ mathbb n} \ setminus s)$是有限的,是有限的,是$ s $ s $ $ s $。

Let $A \subset {\mathbb Z}$ be a finite subset. We denote by $\mathcal{B}(A)$ the set of all integers $n \ge 2$ such that $|nA| > (2n-1)(|A|-1)$, where $nA=A+\cdots+A$ denotes the $n$-fold sumset of $A$. The motivation to consider $\mathcal{B}(A)$ stems from Buchweitz's discovery in 1980 that if a numerical semigroup $S \subseteq {\mathbb N}$ is a Weierstrass semigroup, then $\mathcal{B}({\mathbb N} \setminus S) = \emptyset$. By constructing instances where this condition fails, Buchweitz disproved a longstanding conjecture by Hurwitz (1893). In this paper, we prove that for any numerical semigroup $S \subset {\mathbb N}$ of genus $g \ge 2$, the set $\mathcal{B}({\mathbb N} \setminus S) $ is finite, of unbounded cardinality as $S$ varies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源