论文标题

用于减少危害及其推理特性的复合概率模型

A Compounded Probability Model for Decreasing Hazard and its Inferential Properties

论文作者

Singh, Brijesh P., Das, Utpal Dhar, Singh, Sandeep

论文摘要

自然界中存在一些现实生活中存在的问题。可以通过具有多个参数的复杂分布或某些分布的有限混合物来对这种类型的问题进行建模。在本文中,引入了单个参数连续分布来建模这种类型的问题。基线分布是指数级的,并且通过Lindley分布更加复杂。提出的分布的一些重要特性,例如分布函数,生存功能,危险功能和累积危害功能。获得的参数的最大似然估计值是不以封闭形式的,因此迭代程序用于获得参数的估计。所提出的分布的矩不存在,因此获得了中位数和模式。分布呈阳性偏斜,该分布的危险率正在降低。一些真实的数据集用于查看提议的分布的性能,并使用可能性,AIC,AICC,BIC和KS统计数据比较一些其他有效的危害分布。

There are some real life issues that are exists in nature which has early failure. This type of problems can be modelled either by a complex distribution having more than one parameter or by finite mixture of some distribution. In this article a single parameter continuous distribution is introduced to model such type of problems. The base line distribution is exponential and it is compounded by lindley distribution. Some important properties of the proposed distribution such as distribution function, survival function, hazard function and cumulative hazard function are derived. The maximum likelihood estimate of the parameter is obtained which is not in closed form, thus iteration procedure is used to obtain the estimate of parameter. The moments of the proposed distribution does not exist thus median and mode is obtained. The distribution is positively skewed and the hazard rate of this distribution is decreasing. Some real data sets are used to see the performance of proposed distribution with comparison of some other competent distributions of decreasing hazard using Likelihood, AIC, AICc, BIC and KS statistics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源