论文标题
跨电磁频谱的SGR A*的快速变化
Rapid Variability of Sgr A* across the Electromagnetic Spectrum
论文作者
论文摘要
Sagittarius A*(Sgr a*)是可变无线电,近红外(NIR),X射线源与积聚在银河中心黑洞上。我们已经分析了一项全面的亚亚毫米表(包括与NIR监控的新观测值),NIR和2-8 KEV数据集。亚略算变化往往会落在NIR中的$ \ sim $ 30分钟。适合X射线一阶结构函数的近似贝叶斯计算(ABC)在X射线中的短时标准的功率明显少于NIR。在短时标准和观察到的NIR-X射线相关性结合使用的X射线变异性较小,这意味着可变性可以描述为两个严格相关的随机过程的结果,X射线过程是NIR过程的低通滤波版本。 NIR - X射线链接提出了一个简单的辐射模型:一个紧凑的,自吸收的同步球形球体,高频截止位于NIR频率接近NIR频率,以及在较高频率下的Synchrotron Self-Compton散射组件。该模型具有适合亚毫米,NIR和X射线结构函数的参数,在所有波长,所有光曲线的统计特性以及频段之间的时间滞后都重现了观察到的磁通密度。拟合还为物理参数提供了合理的值,例如磁通量密度$ b \ oit13 $ g,源大小$ l \ oft2.2r_ {s} $和高能量电子密度$ n_ {e} \ times10^oft4 \ times10^{7} {7} $ cm $ $ cm $^{ - 3} $。动画说明了典型的光曲线,我们将贝叶斯分析,模型实现和可视化代码的参数链设为公开。
Sagittarius A* (Sgr A*) is the variable radio, near-infrared (NIR), and X-ray source associated with accretion onto the Galactic center black hole. We have analyzed a comprehensive submillimeter (including new observations simultaneous with NIR monitoring), NIR, and 2-8 keV dataset. Submillimeter variations tend to lag those in the NIR by $\sim$30 minutes. An approximate Bayesian computation (ABC) fit to the X-ray first-order structure function shows significantly less power at short timescales in the X-rays than in the NIR. Less X-ray variability at short timescales combined with the observed NIR-X-ray correlations means the variability can be described as the result of two strictly correlated stochastic processes, the X-ray process being the low-pass-filtered version of the NIR process. The NIR--X-ray linkage suggests a simple radiative model: a compact, self-absorbed synchrotron sphere with high-frequency cutoff close to NIR frequencies plus a synchrotron self-Compton scattering component at higher frequencies. This model, with parameters fit to the submillimeter, NIR, and X-ray structure functions, reproduces the observed flux densities at all wavelengths, the statistical properties of all light curves, and the time lags between bands. The fit also gives reasonable values for physical parameters such as magnetic flux density $B\approx13$ G, source size $L \approx2.2R_{S}$, and high-energy electron density $n_{e}\approx4\times10^{7}$ cm$^{-3}$. An animation illustrates typical light curves, and we make public the parameter chain of our Bayesian analysis, the model implementation, and the visualization code.