论文标题

独轮车图和直径的直径算法 - 优美的增强树木

Algorithms for Diameters of Unicycle Graphs and Diameter-Optimally Augmenting Trees

论文作者

Wang, Haitao, Zhao, Yiming

论文摘要

我们考虑计算独轮车图的直径的问题(即具有独特周期的图)。我们为问题提供了一个O(n)时间算法,其中n是图的顶点。这改善了以前的最佳O(n \ log n)时间解决方案[OH and AHN,ISAAC 2016]。将此算法用作子例程,我们解决了将快捷方式添加到树上的问题,以便将新图的直径(这是独轮图)最小化;我们的算法需要O(n^2 \ log n)时间和o(n)空间。以前的最佳算法解决了O(n^2 \ log^3 n)时间和o(n)空间[OH and Ahn,Isaac 2016]或O(n^2)和O(n^2)和O(n^2)空间[Bilò,Isaac 2018]中的问题。

We consider the problem of computing the diameter of a unicycle graph (i.e., a graph with a unique cycle). We present an O(n) time algorithm for the problem, where n is the number of vertices of the graph. This improves the previous best O(n \log n) time solution [Oh and Ahn, ISAAC 2016]. Using this algorithm as a subroutine, we solve the problem of adding a shortcut to a tree so that the diameter of the new graph (which is a unicycle graph) is minimized; our algorithm takes O(n^2 \log n) time and O(n) space. The previous best algorithms solve the problem in O(n^2 \log^3 n) time and O(n) space [Oh and Ahn, ISAAC 2016], or in O(n^2) time and O(n^2) space [Bilò, ISAAC 2018].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源