论文标题

内核阶段和带有自动分化的冠状动脉

Kernel Phase and Coronagraphy with Automatic Differentiation

论文作者

Pope, Benjamin J. S., Pueyo, Laurent, Xin, Yinzi, Tuthill, Peter G.

论文摘要

望远镜中沿望远镜的光路沿光路的累积会在产生的图像中产生扭曲和斑点,从而限制了高角度分辨率下相机的性能。使用硬件和数据分析软件同时实现对诸如行星等微弱资源(例如行星)的最高敏感性,这一点很重要。尽管分析方法是有效的,但实际系统在数值上是更好的模型,但是具有许多参数的模型可能很难理解,优化和应用。现在,为机器学习开发的自动分化软件现在使计算有关任意光学系统直接畸变的衍生物。我们将这种强大的新工具应用于增强高角度分辨率的天文成像。自我校准的可观察物(例如“闭合阶段”或“ Biseptrum”)已被广泛用于光学和射电天文学中,以减轻光学畸变并实现高保真成像。内核相是小相误差极限的闭合相的概括。使用自动差异化,我们在此框架内重现了现有的内核相理论,并证明了对lyot coronagraph的扩展,找到了对相位噪声具有抵抗力的斑点的自校准组合,但仅在非常高的波纹质量方案中。作为一个说明性的例子,我们重新分析了对二进制Alpha ophiuchi的Palomar自适应光学观察,发现了新管道和现有标准之间的一致性。我们提出了一个新的Python软件包“吗啡”,该软件包结合了这些想法,其接口与流行的软件包类似,用于具有自动差异的光学模拟。这些方法可能有助于通过梯度下降设计改进的天文光学系统。

The accumulation of aberrations along the optical path in a telescope produces distortions and speckles in the resulting images, limiting the performance of cameras at high angular resolution. It is important to achieve the highest possible sensitivity to faint sources such as planets, using both hardware and data analysis software. While analytic methods are efficient, real systems are better-modelled numerically, but such models with many parameters can be hard to understand, optimize and apply. Automatic differentiation software developed for machine learning now makes calculating derivatives with respect to aberrations straightforward for arbitrary optical systems. We apply this powerful new tool to enhance high-angular-resolution astronomical imaging. Self-calibrating observables such as the 'closure phase' or 'bispectrum' have been widely used in optical and radio astronomy to mitigate optical aberrations and achieve high-fidelity imagery. Kernel phases are a generalization of closure phases in the limit of small phase errors. Using automatic differentiation, we reproduce existing kernel phase theory within this framework and demonstrate an extension to the Lyot coronagraph, finding self-calibrating combinations of speckles which are resistant to phase noise, but only in the very high-wavefront-quality regime. As an illustrative example, we reanalyze Palomar adaptive optics observations of the binary alpha Ophiuchi, finding consistency between the new pipeline and the existing standard. We present a new Python package 'morphine' that incorporates these ideas, with an interface similar to the popular package poppy, for optical simulation with automatic differentiation. These methods may be useful for designing improved astronomical optical systems by gradient descent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源