论文标题

通过度量归一化改善功能连接指纹指纹

Improving Functional Connectome Fingerprinting with Degree-Normalization

论文作者

Chiêm, Benjamin, Abbas, Kausar, Amico, Enrico, Duong-Tran, Duy Anh, Crevecoeur, Frédéric, Goñi, Joaquín

论文摘要

功能连通性量化了使用神经成像数据(例如功能性MRI BOLD时间序列)测量大脑区域活性之间的统计依赖性。功能连接的网络表示,称为功能连接组(FC),已被证明包含单个指纹,允许参与者在连续测试会话中进行识别。最近,研究人员专注于这些指纹的提取,并在个性化医学中使用了潜在的应用。 在这里,我们表明,以数学为单位的程度差异化可以改善FC指纹的提取。程度归一化的作用是减少整个脑网络中牢固连接的大脑区域的过度影响。我们采用差异性可识别性框架,并将其应用于来自人类连接项目,静止状态和7个fMRI任务的409个个人的原始和学位归一化FC。 我们的结果表明,程度归一化可以系统地改善三个指数指标,即差异性可识别性,识别率和匹配率。此外,与匹配速率度量有关的结果表明,单个指纹嵌入在低维空间中。 结果表明,低维功能指纹的部分位于大脑的弱连接子网中,并且该学位差异化有助于发现它们。这项工作引入了一个简单的数学操作,该操作可能会导致未来FCS指纹研究的显着改善。

Functional connectivity quantifies the statistical dependencies between the activity of brain regions, measured using neuroimaging data such as functional MRI BOLD time series. The network representation of functional connectivity, called a Functional Connectome (FC), has been shown to contain an individual fingerprint allowing participants identification across consecutive testing sessions. Recently, researchers have focused on the extraction of these fingerprints, with potential applications in personalized medicine. Here, we show that a mathematical operation denominated degree-normalization can improve the extraction of FC fingerprints. Degree-normalization has the effect of reducing the excessive influence of strongly connected brain areas in the whole-brain network. We adopt the differential identifiability framework and apply it to both original and degree-normalized FCs of 409 individuals from the Human Connectome Project, in resting-state and 7 fMRI tasks. Our results indicate that degree-normalization systematically improves three fingerprinting metrics, namely differential identifiability, identification rate and matching rate. Moreover, the results related to the matching rate metric suggest that individual fingerprints are embedded in a low-dimensional space. The results suggest that low-dimensional functional fingerprints lie in part in weakly connected subnetworks of the brain, and that degree-normalization helps uncovering them. This work introduces a simple mathematical operation that could lead to significant improvements in future FCs fingerprinting studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源