论文标题
危险品。 vii。早期M矮星的年龄和旋转的紫外线发射的演变
HAZMAT. VII. The Evolution of Ultraviolet Emission with Age and Rotation for Early M Dwarf Stars
论文作者
论文摘要
紫外线(UV)从宇宙中众多恒星,矮人矮的发射影响其行星的地层,化学,大气稳定性和表面宜居性。我们使用Hubble Space望远镜观测到Tucana Horologium(40 Myr),Hyades(650 Myr),以及(2-9 Gyr)对象,分析了UV发射从M0-M2.5(0.3-0.6 MSUN)星星的函数,是年龄,旋转和Rossby数的函数。其C II,C III,C IV,HE II,N V,SI III和SI IV发射线的静态表面通量在恒星过渡区域形成,在恒定水平上保持升高,为240 $ \ pm $ 30 MYR,然后在10 Gyr的年龄下降2.1个数量级。 Mg II和Far-UV假胞菌发射在恒星色球圈中形成,随着年龄的增长而表现出更大的逐渐进化,分别下降了1.3和1.7个数量级。最年轻的恒星在远紫外线中表现出0.1 dex的散射,而假恒星仅归因于旋转调制,长期活性循环或未知的可变性来源。饱和度符合这些数据可以预测M0-M2.5恒星在紫外线线和Far-uv pseudocontinuum中的静止发射,准确性约为0.2-0.3 DEX,这是目前可用的最准确的手段。紫外线发射的预测将有助于研究超级大气进化,生物学相关分子的破坏和非生物产生,以及用詹姆斯·韦伯(James Webb)太空望远镜(例如詹姆斯·韦伯(James Webb)太空望远镜(James Webb Space)等观测值测得的红外和光学行星光谱。
The ultraviolet (UV) emission from the most numerous stars in the universe, M dwarfs, impacts the formation, chemistry, atmospheric stability, and surface habitability of their planets. We have analyzed the spectral evolution of UV emission from M0-M2.5 (0.3-0.6 Msun) stars as a function of age, rotation, and Rossby number, using Hubble Space Telescope observations of Tucana Horologium (40 Myr), Hyades (650 Myr), and field (2-9 Gyr) objects. The quiescent surface flux of their C II, C III, C IV, He II, N V, Si III, and Si IV emission lines, formed in the stellar transition region, remains elevated at a constant level for 240 $\pm$ 30 Myr before declining by 2.1 orders of magnitude to an age of 10 Gyr. Mg II and far-UV pseudocontinuum emission, formed in the stellar chromosphere, exhibit more gradual evolution with age, declining by 1.3 and 1.7 orders of magnitude, respectively. The youngest stars exhibit a scatter of 0.1 dex in far-UV line and pseudocontinuum flux attributable only to rotational modulation, long-term activity cycles, or an unknown source of variability. Saturation-decay fits to these data can predict an M0-M2.5 star's quiescent emission in UV lines and the far-UV pseudocontinuum with an accuracy of roughly 0.2-0.3 dex, the most accurate means presently available. Predictions of UV emission will be useful for studying exoplanetary atmospheric evolution, the destruction and abiotic production of biologically relevant molecules, and interpreting infrared and optical planetary spectra measured with observatories like the James Webb Space Telescope.