论文标题
洗牌和学习:最大程度地减少无监督哈希的共同信息
Shuffle and Learn: Minimizing Mutual Information for Unsupervised Hashing
论文作者
论文摘要
无监督的二进制表示允许快速数据检索,而无需任何注释,从而实现了诸如快速人员重新识别和多媒体检索之类的实际应用。有人认为,由于当前方法未能捕获完整域中的精确代码冲突,因此二进制空间中的冲突是高性能无监督哈希的主要障碍之一。提出了一种称为Shuffle和Learn的新颖放松方法,以解决无监督的哈希(Hash)中的代码冲突。引入了近似的关节概率和二进制层梯度的衍生物,以桥接从哈希到输入的更新。提供具有$ε$ - 具有近似衍生物的联合概率的限制,以确保对相互信息应用更新的精确性。提出的算法是通过迭代全局更新进行的,以最大程度地减少相互信息,在常规无监督优化之前将代码分化。实验表明,所提出的方法可以放松本地最佳限度的代码优化,并有助于生成更具歧视性和信息性的二进制表示,而无需任何注释。在三个开放数据集上进行了图像检索上图像检索上的性能基准测试,该模型在所有这些数据集的图像检索任务上实现了最先进的精度。提供了数据集和可再现代码。
Unsupervised binary representation allows fast data retrieval without any annotations, enabling practical application like fast person re-identification and multimedia retrieval. It is argued that conflicts in binary space are one of the major barriers to high-performance unsupervised hashing as current methods failed to capture the precise code conflicts in the full domain. A novel relaxation method called Shuffle and Learn is proposed to tackle code conflicts in the unsupervised hash. Approximated derivatives for joint probability and the gradients for the binary layer are introduced to bridge the update from the hash to the input. Proof on $ε$-Convergence of joint probability with approximated derivatives is provided to guarantee the preciseness on update applied on the mutual information. The proposed algorithm is carried out with iterative global updates to minimize mutual information, diverging the code before regular unsupervised optimization. Experiments suggest that the proposed method can relax the code optimization from local optimum and help to generate binary representations that are more discriminative and informative without any annotations. Performance benchmarks on image retrieval with the unsupervised binary code are conducted on three open datasets, and the model achieves state-of-the-art accuracy on image retrieval task for all those datasets. Datasets and reproducible code are provided.