论文标题
基于深神经网络的压缩棚屋 - 哈特曼波前传感器
Compressive Shack-Hartmann Wavefront Sensor based on Deep Neural Networks
论文作者
论文摘要
Shack-Hartmann波前传感器广泛用于测量自适应光学系统中大气湍流引起的畸变。但是,如果存在强大的大气湍流或导向恒星的亮度较低,则将影响波前测量的准确性。在本文中,我们提出了一种压缩的棚屋 - hartmann波前传感方法。我们的方法没有用所有子孔的斜率测量来重建波前,而是通过斜率测量的子孔径重建波前,这些斜率测量具有具有高信号噪声比的点图像。此外,我们进一步建议使用深层神经网络加速波前重建速度。在深神经网络的训练阶段,我们建议添加一个辍学层以模拟压缩感应过程,这可能会提高我们方法的开发速度。训练后,压缩的棚屋 - hartmann波前传感方法可以在高空间分辨率中重建波前,并且仅从少量的亚孔径中进行坡度测量。我们将直接的压缩棚屋 - hartmann波前传感方法与图像反卷积算法相结合,以开发高阶图像恢复方法。我们使用高阶图像恢复方法恢复的图像来测试我们的压缩棚屋波兰传感方法的性能。结果表明,我们的方法可以提高波前测量的准确性,并且适合实时应用。
The Shack-Hartmann wavefront sensor is widely used to measure aberrations induced by atmospheric turbulence in adaptive optics systems. However if there exists strong atmospheric turbulence or the brightness of guide stars is low, the accuracy of wavefront measurements will be affected. In this paper, we propose a compressive Shack-Hartmann wavefront sensing method. Instead of reconstructing wavefronts with slope measurements of all sub-apertures, our method reconstructs wavefronts with slope measurements of sub-apertures which have spot images with high signal to noise ratio. Besides, we further propose to use a deep neural network to accelerate wavefront reconstruction speed. During the training stage of the deep neural network, we propose to add a drop-out layer to simulate the compressive sensing process, which could increase development speed of our method. After training, the compressive Shack-Hartmann wavefront sensing method can reconstruct wavefronts in high spatial resolution with slope measurements from only a small amount of sub-apertures. We integrate the straightforward compressive Shack-Hartmann wavefront sensing method with image deconvolution algorithm to develop a high-order image restoration method. We use images restored by the high-order image restoration method to test the performance of our the compressive Shack-Hartmann wavefront sensing method. The results show that our method can improve the accuracy of wavefront measurements and is suitable for real-time applications.