论文标题
二聚体套件的孤立点
Isolated points of Diophantine sets
论文作者
论文摘要
令$γ\ in(0; \ frac {1} {2}),τ\ geq 1 $ $,并定义“ $γ,τ$ diophantine set” as:$ d_ d_ d_ {γ{γ,τ}:= \ \ \ {α\ in(0; 1):| qa) q \ in \ bbb {n} \},\ qquad || x ||:= \ inf_ {p \ in \ bbb {z}} | x-p |。$ $$我们分析了这些集合的拓扑,我们表明它们通常具有孤立的点。
Let $γ\in(0;\frac{1}{2}),τ\geq 1$ and define the "$γ,τ$ Diophantine set" as: $$D_{γ, τ}:=\{α\in (0;1): ||qα||\geq\fracγ{q^τ}\quad\forall q\in\Bbb{N}\},\qquad ||x||:=\inf_{p\in\Bbb{Z}}|x-p|.$$ We analyze the topology of these sets and we show that generally they have isolated points.