论文标题
自由模式删除和模式解耦,用于模拟一般超导量子电路
Free Mode Removal and Mode Decoupling for Simulating General Superconducting Quantum Circuits
论文作者
论文摘要
超导量子电路是通用量子计算机的主要候选者之一。设计新型的量子和多Qubit超导电路需要模拟和分析通用电路的性能的能力。特别是,走出了Transmon方法,我们无法对非谐度进行假设,从而排除了黑框量化方法,并需要进行正式的电路量化方法。我们考虑并解决了模拟一般超导电路中涉及的两个问题。问题之一是电路中的自由模式的处理,即在哈密顿量中没有潜在术语的电路模式。另一个问题是电路尺寸,即模拟强耦合多模电路的挑战。我们用来解决这些问题的主要数学工具是量子力学设置中的线性规范转换。我们通过执行线性转换以完全将免费模式与其他电路模式完全解矛,从而解决了第一个问题,以提供可证明正确的算法来删除自由模式。我们通过提供一系列不同的线性规范变换来减少模板耦合来解决第二个问题,从而将问题减少到弱耦合的情况下,并大大减轻开销的经典模拟。我们通过将其应用于两个电感耦合的磁盘量子位的电路来基准我们的去耦方法,从而在需要模拟的希尔伯特空间的大小中获得了几个数量级的降低。
Superconducting quantum circuits is one of the leading candidates for a universal quantum computer. Designing novel qubit and multiqubit superconducting circuits requires the ability to simulate and analyze the properties of a general circuit. In particular, going outside the transmon approach, we cannot make assumptions on anharmonicity, thus precluding blackbox quantization approaches and necessitating the formal circuit quantization approach. We consider and solve two issues involved in simulating general superconducting circuits. One of the issues is the handling of free modes in the circuit, that is, circuit modes with no potential term in the Hamiltonian. Another issue is circuit size, namely the challenge of simulating strongly coupled multimode circuits. The main mathematical tool we use to address these issues is the linear canonical transformation in the setting of quantum mechanics. We address the first issue by giving a provably correct algorithm for removing free modes by performing a linear canonical transformation to completely decouple the free modes from other circuit modes. We address the second by giving a series of different linear canonical transformations to reduce intermode couplings, thereby reducing the problem to the weakly coupled case and greatly mitigating the overhead for classical simulation. We benchmark our decoupling methods by applying them to the circuit of two inductively coupled fluxonium qubits, obtaining several orders of magnitude reduction in the size of the Hilbert space that needs to be simulated.