论文标题

数据对基于学习的控制扩展版本稳定性的影响

The Impact of Data on the Stability of Learning-Based Control- Extended Version

论文作者

Lederer, Armin, Capone, Alexandre, Beckers, Thomas, Umlauft, Jonas, Hirche, Sandra

论文摘要

尽管存在基于学习的控制方法的正式保证,但数据与控制绩效之间的关系仍然很少理解。在本文中,我们提出了一种基于Lyapunov的措施,以量化数据对可认证控制性能的影响。通过通过高斯过程对未知系统动态进行建模,我们可以确定模型不确定性和稳定条件满意度之间的相互关系。这使我们能够直接评估数据对可证明的固定控制性能的影响,从而对闭环系统性能的数据值。我们的方法适用于应由基于通用学习的控制定律控制的多种未知的非线性系统,并且在数值模拟中获得的结果表明该措施的功效。

Despite the existence of formal guarantees for learning-based control approaches, the relationship between data and control performance is still poorly understood. In this paper, we propose a Lyapunov-based measure for quantifying the impact of data on the certifiable control performance. By modeling unknown system dynamics through Gaussian processes, we can determine the interrelation between model uncertainty and satisfaction of stability conditions. This allows us to directly asses the impact of data on the provable stationary control performance, and thereby the value of the data for the closed-loop system performance. Our approach is applicable to a wide variety of unknown nonlinear systems that are to be controlled by a generic learning-based control law, and the results obtained in numerical simulations indicate the efficacy of the proposed measure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源