论文标题

片上错误触发的多层备注尖峰神经网络的学习

On-Chip Error-triggered Learning of Multi-layer Memristive Spiking Neural Networks

论文作者

Payvand, Melika, Fouda, Mohammed E., Kurdahi, Fadi, Eltawil, Ahmed M., Neftci, Emre O.

论文摘要

神经形态计算的最新突破表明,局部形式的梯度下降学习与尖峰神经网络(SNN)和突触可塑性兼容。尽管可以使用神经形态VLSI来可扩展SNN,但是仍然缺少可以使用梯度散发的架构进行学习。在本文中,我们提出了一种本地,基于梯度的,错误触发的学习算法,并具有在线三元重量更新。所提出的算法可以在线培训多层SNN,其中具有回忆性神经形态硬件,显示出与最新技术相比,性能的损失很小。我们还提出了一个基于回忆横杆阵列的硬件体系结构,以执行所需的矢量 - 矩阵乘法。在线培训所需的必要的外围电路,包括突触前,突触后和写作电路,已在亚阈值省级制度中设计,用于通过标准的180 nm CMOS流程进行节省。

Recent breakthroughs in neuromorphic computing show that local forms of gradient descent learning are compatible with Spiking Neural Networks (SNNs) and synaptic plasticity. Although SNNs can be scalably implemented using neuromorphic VLSI, an architecture that can learn using gradient-descent in situ is still missing. In this paper, we propose a local, gradient-based, error-triggered learning algorithm with online ternary weight updates. The proposed algorithm enables online training of multi-layer SNNs with memristive neuromorphic hardware showing a small loss in the performance compared with the state of the art. We also propose a hardware architecture based on memristive crossbar arrays to perform the required vector-matrix multiplications. The necessary peripheral circuitry including pre-synaptic, post-synaptic and write circuits required for online training, have been designed in the sub-threshold regime for power saving with a standard 180 nm CMOS process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源