论文标题

ODE和模型理论的多实验参数可识别性

Multi-experiment parameter identifiability of ODEs and model theory

论文作者

Ovchinnikov, Alexey, Pillay, Anand, Pogudin, Gleb, Scanlon, Thomas

论文摘要

结构可识别性是带有参数的ode模型的属性,可以从连续无噪声数据确定参数。这是实用可识别性的自然先决条件。进行多个独立的实验可以使更多参数的参数或函数可识别,这是具有理想的属性。多少个实验足够?在本文中,我们提供了一种算法,以确定多种局部可识别性的确切实验数量,并获得最多可关闭的上限,用于多个实验全局可识别性的实验数。 有趣的是,使用模型理论(在数学逻辑意义上)发现并证明了该算法的主要理论成分。我们希望这种意外的联系将刺激应用代数与模型理论之间的相互作用,并且我们在参数可识别性的背景下简要介绍了模型理论。作为模型理论在该领域的另一个相关应用,我们构建了一个具有一个输出的非线性ODE系统,因此单个实​​验和多实验性可识别性在系统中是不同的。这与有关单输出线性系统的最新结果形成对比。 我们还提出了具有多项式算术复杂性的算法的蒙特卡洛随机版本。提供了算法的实现,并在几个示例中证明了其性能。源代码可在https://github.com/pogudingleb/experimentsbound上找到。

Structural identifiability is a property of an ODE model with parameters that allows for the parameters to be determined from continuous noise-free data. This is a natural prerequisite for practical identifiability. Conducting multiple independent experiments could make more parameters or functions of parameters identifiable, which is a desirable property to have. How many experiments are sufficient? In the present paper, we provide an algorithm to determine the exact number of experiments for multi-experiment local identifiability and obtain an upper bound that is off at most by one for the number of experiments for multi-experiment global identifiability. Interestingly, the main theoretical ingredient of the algorithm has been discovered and proved using model theory (in the sense of mathematical logic). We hope that this unexpected connection will stimulate interactions between applied algebra and model theory, and we provide a short introduction to model theory in the context of parameter identifiability. As another related application of model theory in this area, we construct a nonlinear ODE system with one output such that single-experiment and multiple-experiment identifiability are different for the system. This contrasts with recent results about single-output linear systems. We also present a Monte Carlo randomized version of the algorithm with a polynomial arithmetic complexity. Implementation of the algorithm is provided and its performance is demonstrated on several examples. The source code is available at https://github.com/pogudingleb/ExperimentsBound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源