论文标题

Cryo-ZSSR:基于深度内部学习的多图像超分辨率

Cryo-ZSSR: multiple-image super-resolution based on deep internal learning

论文作者

Huang, Qinwen, Zhou, Ye, Du, Xiaochen, Chen, Reed, Wang, Jianyou, Rudin, Cynthia, Bartesaghi, Alberto

论文摘要

单粒子冷冻电子显微镜(Cryo-EM)是一种能够以近原子分辨率可视化蛋白质和宏观分子复合物的新兴成像方式。用于防止样品辐射损害的低电子剂量,导致噪声功率比信号功率大100倍的图像。为了克服低SNR,在3D中平均将数十万个在数据收集的粒子投影中获得,以确定感兴趣的结构。同时,基于神经网络的最新图像超分辨率(SR)技术显示了自然图像上最先进的表现。在这些进步的基础上,我们基于专门针对低SNR条件下工作的深层内部学习提出了多图像SR算法。我们的方法利用了冷冻EM电影的内部图像统计数据,并且不需要对地面数据进行培训。当应用于丙旋蛋白的单粒子数据集时,我们表明从SR显微照片获得的3D结构的分辨率可以超过成像系统所施加的限制。我们的结果表明,低放大成像与图像SR的组合有可能在不牺牲分辨率的情况下加速冷冻EM数据收集。

Single-particle cryo-electron microscopy (cryo-EM) is an emerging imaging modality capable of visualizing proteins and macro-molecular complexes at near-atomic resolution. The low electron-doses used to prevent sample radiation damage, result in images where the power of the noise is 100 times greater than the power of the signal. To overcome the low-SNRs, hundreds of thousands of particle projections acquired over several days of data collection are averaged in 3D to determine the structure of interest. Meanwhile, recent image super-resolution (SR) techniques based on neural networks have shown state of the art performance on natural images. Building on these advances, we present a multiple-image SR algorithm based on deep internal learning designed specifically to work under low-SNR conditions. Our approach leverages the internal image statistics of cryo-EM movies and does not require training on ground-truth data. When applied to a single-particle dataset of apoferritin, we show that the resolution of 3D structures obtained from SR micrographs can surpass the limits imposed by the imaging system. Our results indicate that the combination of low magnification imaging with image SR has the potential to accelerate cryo-EM data collection without sacrificing resolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源