论文标题

整合自动声音发声数据和点数调查以估计鸟类丰度

Integrating automated acoustic vocalization data and point count surveys for estimation of bird abundance

论文作者

Doser, Jeffrey W., Finley, Andrew O., Weed, Aaron S., Zipkin, Elise F.

论文摘要

监测跨时时间和时间的野生动植物的丰富性是研究其人口动态并为有效管理提供信息的重要任务。声学记录单元是一种有前途的技术,用于有效监测鸟类种群和社区。我们提出了一个集成的建模框架,该框架结合了高质量但暂时稀疏的鸟点计数调查数据与声学记录。使用仿真,我们使用从聚类算法,点计数数据和手动验证的声音发声的子集获得的不同量的声音来比较丰度估计的准确性和精度。我们还在案例研究中使用我们的建模框架来估计美国佛蒙特州佛蒙特州的东部木 - 木材(Contopus virens)的丰度。仿真研究表明,与单独使用声学或点数数据相比,通过集成模型组合声学和点数数据可以提高精度和精度。将声学数据与少量点数调查相结合可以得出丰度的估计,而无需从声学数据验证任何已确定的发声。在我们的案例研究中,综合模型为该地区东部木 - 菜单下降提供了适度的支持。我们的集成建模方法将密集的声学数据与几个点计数调查结合在一起,以提供可靠的物种丰度估计值,而无需手动识别声发声或过高的昂贵的大量重复点计数调查。当难以获得点数数据时,或者当监测专注于具有低检测概率的稀有物种时,我们提出的方法为大时空区域提供了有效的监测替代方案。

Monitoring wildlife abundance across space and time is an essential task to study their population dynamics and inform effective management. Acoustic recording units are a promising technology for efficiently monitoring bird populations and communities. We present an integrated modeling framework that combines high-quality but temporally sparse bird point count survey data with acoustic recordings. Using simulations, we compare the accuracy and precision of abundance estimates using differing amounts of acoustic vocalizations obtained from a clustering algorithm, point count data, and a subset of manually validated acoustic vocalizations. We also use our modeling framework in a case study to estimate abundance of the Eastern Wood-Pewee (Contopus virens) in Vermont, U.S.A. The simulation study reveals that combining acoustic and point count data via an integrated model improves accuracy and precision of abundance estimates compared with models informed by either acoustic or point count data alone. Combining acoustic data with only a small number of point count surveys yields estimates of abundance without the need for validating any of the identified vocalizations from the acoustic data. Within our case study, the integrated models provided moderate support for a decline of the Eastern Wood-Pewee in this region. Our integrated modeling approach combines dense acoustic data with few point count surveys to deliver reliable estimates of species abundance without the need for manual identification of acoustic vocalizations or a prohibitively expensive large number of repeated point count surveys. Our proposed approach offers an efficient monitoring alternative for large spatio-temporal regions when point count data are difficult to obtain or when monitoring is focused on rare species with low detection probability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源