论文标题

渐近亚历山大·希尔斯乔维茨(Alexander-Hirschowitz)的表面定理

An asymptotic Alexander-Hirschowitz theorem for surfaces

论文作者

Lian, Carl

论文摘要

令x为c上的光滑射射表面,让我在X上成为足够的线束。在本说明中,我们表明,对于所有足够大的d,x上的任何数量的一般double点都施加了线性系统上的预期条件| l^d |。同等地,X单数在任何数量的一般点上的D平面部分具有预期维度。我们猜想,对于任意维度的X也相同。

Let X be a smooth projective surface over C and let L be an ample line bundle on X. In this note, we show that, for all sufficiently large d, any number of general double points on X imposes the expected number of conditions on the linear system |L^d|. Equivalently, the space of d-plane sections of X singular at any number of general points has the expected dimension. We conjecture that the same holds for X of arbitrary dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源