论文标题
关于使用现代HPC解决方案实施大规模积分运营商 - 最小二乘反转的3D Marchenko成像
On the implementation of large-scale integral operators with modern HPC solutions -- Application to 3D Marchenko imaging by least-squares inversion
论文作者
论文摘要
卷积类型的数值积分运算符构成了大多数基于波浪方程的方法来处理和成像地震数据的基础。由于这些方法中有几种需要解决逆问题的解决方案,因此必须执行建模操作员的多个正向和伴随通过以收敛到令人满意的解决方案。这项工作强调了在3D地震数据集上实施此类运营商时会出现的挑战,并为其用于求解大型积分方程式的使用提供了见解。提出了一个Python框架,该框架利用库进行分布式存储和计算,并提供了线性运算符的高级符号表示。为了验证其有效性,评估了多维卷积运算符的前进和伴随实现,以增加内核大小和计算资源数量的数量。我们的计算框架进一步证明,适用于经典的本地高性能计算和云计算体系结构。最终介绍了由地震重新绘制的两个随后步骤组成的3D合成数据集的目标成像的示例。在这两种情况下,使用完整数据集以及数据集的空间删除版本均通过最小二乘倒置来估算重新定为重新安置的字段,以研究两种反问题对输入数据集中两个逆问题的鲁棒性。我们观察到,与它们的两个维度相比,这些算法的三个维度适用于三个维度。尽管混音在重新拟合的田地中引入了噪音,但它们被剥夺了众所周知的虚假伪影,这是由于在更便宜的,基于旁边的重新播种技术中对过度繁殖的不正确处理而引起的。
Numerical integral operators of convolution type form the basis of most wave-equation-based methods for processing and imaging of seismic data. As several of these methods require the solution of an inverse problem, multiple forward and adjoint passes of the modelling operator must be performed to converge to a satisfactory solution. This work highlights the challenges that arise when implementing such operators on 3D seismic datasets and it provides insights into their usage for solving large systems of integral equations. A Python framework is presented that leverages libraries for distributed storage and computing, and provides an high-level symbolic representation of linear operators. To validate its effectiveness, the forward and adjoint implementations of a multi-dimensional convolution operator are evaluated with respect to increasing size of the kernel and number of computational resources. Our computational framework is further shown to be suitable for both classic on-premise High-Performance Computing and cloud computing architectures. An example of target-oriented imaging of a 3D synthetic dataset which comprises of two subsequent steps of seismic redatuming is finally presented. In both cases, the redatumed fields are estimated by means of least-squares inversion using the full dataset as well as spatially decimated versions of the dataset as a way to investigate the robustness of both inverse problems to spatial aliasing in the input dataset. We observe that less strict sampling requirements apply in three dimensions for these algorithms compared to their two dimensions counterparts. Whilst aliasing introduces noise in the redatumed fields, they are however deprived of the well-known spurious artefacts arising from incorrect handling of the overburden propagation in cheaper, adjoint-based redatuming techniques.