论文标题
对医疗保健增强学习的代表性学习的实证研究
An Empirical Study of Representation Learning for Reinforcement Learning in Healthcare
论文作者
论文摘要
加强学习(RL)最近已应用于鉴定和制定假设患者的假设治疗策略的顺序估计和预测问题,并特别关注通过观察数据进行离线学习。实际上,成功的RL依赖于从连续观察中得出的信息潜在国家来制定最佳治疗策略。迄今为止,如何最好地在医疗保健环境中构建此类状态是一个悬而未决的问题。在本文中,我们使用来自模仿III数据集中化粪池患者的数据编码架构的几种信息进行了实证研究,以形成患者状态的表示。我们评估表示维度,与既定的敏锐度得分的相关性以及从中获得的治疗策略的影响。我们发现,依次形成的状态表示有助于在批处理设置中有效的政策学习,从而验证了一种更周到的代表学习方法,该方法仍然忠于医疗保健数据的顺序和部分性质。
Reinforcement Learning (RL) has recently been applied to sequential estimation and prediction problems identifying and developing hypothetical treatment strategies for septic patients, with a particular focus on offline learning with observational data. In practice, successful RL relies on informative latent states derived from sequential observations to develop optimal treatment strategies. To date, how best to construct such states in a healthcare setting is an open question. In this paper, we perform an empirical study of several information encoding architectures using data from septic patients in the MIMIC-III dataset to form representations of a patient state. We evaluate the impact of representation dimension, correlations with established acuity scores, and the treatment policies derived from them. We find that sequentially formed state representations facilitate effective policy learning in batch settings, validating a more thoughtful approach to representation learning that remains faithful to the sequential and partial nature of healthcare data.