论文标题

通过实际超矩形的表示理论,公制变换和低级矩阵

Metric Transforms and Low Rank Matrices via Representation Theory of the Real Hyperrectangle

论文作者

Alman, Josh, Chu, Timothy, Miller, Gary, Narayanan, Shyam, Sellke, Mark, Song, Zhao

论文摘要

在本文中,我们开发了一种新技术,我们称之为真实超型角的表示理论,该理论描述了如何计算由高矩形引起的某些矩阵的特征向量和特征值。我们表明,当使用多项式方法分析许多不同的算法任务,例如内核方法,神经网络训练,自然语言处理以及算法设计时,自然会出现这些矩阵。然后,我们使用新技术以及这些连接来证明这些领域的几个新结构结果,包括: $ \ bullet $ a函数是一个正确定的曼哈顿内核,并且仅当它是完全单调的函数时。这些内核在机器学习中广泛使用;一个例子是Laplace内核,该内核被广泛用于化学的机器学习中。 $ \ bullet $一个功能将曼哈顿距离转换为曼哈顿距离时,并且仅当它是伯恩斯坦功能时。这完成了Assouad于1980年发起的曼哈顿的理论。 $ \ bullet $ a函数在任何等级$ r $的平方矩阵上都应用的输入始终会导致等级$ <2^{r-1} $的矩阵,并且仅当它是足够低度的多项式。这给出了算法设计中多项式方法使用的关键引理。 我们的工作包括来自不同领域的技术的复杂组合,包括度量嵌入,多项式方法和小组表示理论。

In this paper, we develop a new technique which we call representation theory of the real hyperrectangle, which describes how to compute the eigenvectors and eigenvalues of certain matrices arising from hyperrectangles. We show that these matrices arise naturally when analyzing a number of different algorithmic tasks such as kernel methods, neural network training, natural language processing, and the design of algorithms using the polynomial method. We then use our new technique along with these connections to prove several new structural results in these areas, including: $\bullet$ A function is a positive definite Manhattan kernel if and only if it is a completely monotone function. These kernels are widely used across machine learning; one example is the Laplace kernel which is widely used in machine learning for chemistry. $\bullet$ A function transforms Manhattan distances to Manhattan distances if and only if it is a Bernstein function. This completes the theory of Manhattan to Manhattan metric transforms initiated by Assouad in 1980. $\bullet$ A function applied entry-wise to any square matrix of rank $r$ always results in a matrix of rank $< 2^{r-1}$ if and only if it is a polynomial of sufficiently low degree. This gives a converse to a key lemma used by the polynomial method in algorithm design. Our work includes a sophisticated combination of techniques from different fields, including metric embeddings, the polynomial method, and group representation theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源