论文标题
基于525 L,T和Y矮人的全套20-PC人口普查的现场质量质量函数
The Field Substellar Mass Function Based on the Full-sky 20-pc Census of 525 L, T, and Y Dwarfs
论文作者
论文摘要
我们为361 L,T和Y矮人提供了最终的Spitzer三角视差。我们将它们与先前的研究结合在一起,以在太阳20 pc之内构建525个已知的L,T和Y矮人的列表,其中38个是第一次介绍。使用已发表的光度法和光谱法以及我们自己的随访,我们提出了一系列色彩标志和色彩图,以进一步表征人口普查成员,我们为批量趋势提供多项式拟合。使用这些特征,我们将每个对象分配为$ t _ {\ rm eff} $ value,并在$ t _ {\ rm eff} $和频谱类型上判断样品完整性。除了类型$ \ ge $ t8和$ t _ {\ rm eff} <$ 600K外,我们的人口普查在统计上已完成为20-PC限制。我们将测量的空间密度与模拟密度分布进行了比较,发现最佳拟合是一个功率定律($ dn/dm \ propto m^{ - α} $),$α= 0.6 {\ pm} 0.1 $。我们发现,Saumon&Marley的进化模型正确地预测了在1200K $ <t _ {\ rm eff} <$ 1350K处观察到的空间密度尖峰的幅度,据信是由L/T转变整个L/T转变的增长。使用此样本定义低质量末端需要更统计的矮人和完整的矮人样本$ \ ge $ y0.5,并使用$ t _ {\ rm eff} <$ 400k。我们得出的结论是,尽管很少有人被鉴定出来,但这种寒冷的物体必须大量存在,我们讨论了它们在很大程度上避免检测的可能原因。
We present final Spitzer trigonometric parallaxes for 361 L, T, and Y dwarfs. We combine these with prior studies to build a list of 525 known L, T, and Y dwarfs within 20 pc of the Sun, 38 of which are presented here for the first time. Using published photometry and spectroscopy as well as our own follow-up, we present an array of color-magnitude and color-color diagrams to further characterize census members, and we provide polynomial fits to the bulk trends. Using these characterizations, we assign each object a $T_{\rm eff}$ value and judge sample completeness over bins of $T_{\rm eff}$ and spectral type. Except for types $\ge$ T8 and $T_{\rm eff} <$ 600K, our census is statistically complete to the 20-pc limit. We compare our measured space densities to simulated density distributions and find that the best fit is a power law ($dN/dM \propto M^{-α}$) with $α= 0.6{\pm}0.1$. We find that the evolutionary models of Saumon & Marley correctly predict the observed magnitude of the space density spike seen at 1200K $< T_{\rm eff} <$ 1350K, believed to be caused by an increase in the cooling timescale across the L/T transition. Defining the low-mass terminus using this sample requires a more statistically robust and complete sample of dwarfs $\ge$Y0.5 and with $T_{\rm eff} <$ 400K. We conclude that such frigid objects must exist in substantial numbers, despite the fact that few have so far been identified, and we discuss possible reasons why they have largely eluded detection.