论文标题

识别适当的树皮

Recognizing Proper Tree-Graphs

论文作者

Chaplick, Steven, Golovach, Petr A., Hartmann, Tim A., Knop, Dušan

论文摘要

我们研究了适当的$ h $ graphs识别问题的参数化复杂性。 $ h $ - 绘图是多数$ h $的分区连接子图的交点图,而适当性意味着禁止顶点表示之间的遏制关系。 1992年,Biró,Hujter和Tuza将$ h $ graphs的类别作为自然(参数化)概括(参数化)概括,Chapllick等人引入了适当的$ h $ graphs。在WADS 2019中,作为适当的间隔和圆形ARC图的概括。对于这些图形类,$ h $可以看作是反映图形到(正确)间隔图的距离的结构参数,因此在高效算法设计中引起了注意作为结构参数。我们显示以下结果。 - 对于带有$ t $节点的树$ t $,可以以$ 2^{\ mathcal {o}(t^2 \ log t)} \ cdot n^3 $ time(是否是$ n $ vertex Graph $ g $是适当的$ t $ graph)确定。对于是的,我们的算法输出了适当的$ t $代表。这证明了适当的$ h $ graphs的识别问题,其中$ h $是一棵树,当通过$ t $的大小进行参数时,可以固定参数。以前仅知道NP完整性。 - 与第一个结果形成鲜明对比,我们证明,如果$ h $不受限制为树,那么识别问题就会变得更加困难。也就是说,我们表明有一个具有4个顶点和5个边缘的Multigraph $ h $,因此决定$ g $是否是合适的$ h $ graph是NP的。

We investigate the parameterized complexity of the recognition problem for the proper $H$-graphs. The $H$-graphs are the intersection graphs of connected subgraphs of a subdivision of a multigraph $H$, and the properness means that the containment relationship between the representations of the vertices is forbidden. The class of $H$-graphs was introduced as a natural (parameterized) generalization of interval and circular-arc graphs by Biró, Hujter, and Tuza in 1992, and the proper $H$-graphs were introduced by Chaplick et al. in WADS 2019 as a generalization of proper interval and circular-arc graphs. For these graph classes, $H$ may be seen as a structural parameter reflecting the distance of a graph to a (proper) interval graph, and as such gained attention as a structural parameter in the design of efficient algorithms. We show the following results. - For a tree $T$ with $t$ nodes, it can be decided in $ 2^{\mathcal{O}(t^2 \log t)} \cdot n^3 $ time, whether an $n$-vertex graph $ G $ is a proper $ T $-graph. For yes-instances, our algorithm outputs a proper $T$-representation. This proves that the recognition problem for proper $H$-graphs, where $H$ required to be a tree, is fixed-parameter tractable when parameterized by the size of $T$. Previously only NP-completeness was known. - Contrasting to the first result, we prove that if $H$ is not constrained to be a tree, then the recognition problem becomes much harder. Namely, we show that there is a multigraph $H$ with 4 vertices and 5 edges such that it is NP-complete to decide whether $G$ is a proper $H$-graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源