论文标题
桥接行星半径谷:恒星聚类作为将子纳普变成超级地球的关键驱动力
Bridging the Planet Radius Valley: Stellar Clustering as a Key Driver for Turning Sub-Neptunes into Super-Earths
论文作者
论文摘要
在地球和海王星之间的大小($ r _ {\ rm p} = 1 { - } 4〜 {\ rm rm r} _ \ oplus $)具有双峰半径分布。这个“行星半径谷”将紧凑的,岩石的超冰($ r _ {\ rm p} = 1.0 { - } 1.8〜 {\ rm rm r} _ \ oplus $)与较大的子neptunes($ r _ {\ rm P} = 1.8气态氢螺旋围绕其岩石芯。已经提出了该半径谷的各种假设,这些假设都依赖于行星系统内部的物理学:宿主恒星的光蒸发,由冷却行星芯驱动的长期质量损失,或者是两种根本不同的行星形成模式之间的过渡,因为气体因原始椎间盘而丢失。在这里,我们报告发现,行星半径分布对环境恒星聚类表现出很大的依赖,其特征是用\ textit {gaia}测量位置速度相位空间密度。当将行星样品分为“场”和“过度密度”子样本时,我们发现该田中的行星系统表现出与相比,在半径谷的行星贫于相比,与相位空间过高的系统相比,行星的缺乏具有统计学意义($ p = 5.5 \ times10^{ - 3} $)。这意味着行星系统的大规模恒星环境是设定行星半径分布的关键因素。我们讨论了如何根据我们的发现后修改半径谷的模型,并得出结论,需要多尺度的多物理场景,连接行星形成和进化,恒星和恒星群集的形成以及星系进化。
Extrasolar planets with sizes between that of the Earth and Neptune ($R_{\rm p}=1{-}4~{\rm R}_\oplus$) have a bimodal radius distribution. This 'planet radius valley' separates compact, rocky super-Earths ($R_{\rm p}=1.0{-}1.8~{\rm R}_\oplus$) from larger sub-Neptunes ($R_{\rm p}=1.8{-}3.5~{\rm R}_\oplus$) hosting a gaseous hydrogen-helium envelope around their rocky core. Various hypotheses for this radius valley have been put forward, which all rely on physics internal to the planetary system: photoevaporation by the host star, long-term mass loss driven by the cooling planetary core, or the transition between two fundamentally different planet formation modes as gas is lost from the protoplanetary disc. Here we report the discovery that the planet radius distribution exhibits a strong dependence on ambient stellar clustering, characterised by measuring the position-velocity phase space density with \textit{Gaia}. When dividing the planet sample into 'field' and 'overdensity' sub-samples, we find that planetary systems in the field exhibit a statistically significant ($p=5.5\times10^{-3}$) dearth of planets below the radius valley compared to systems in phase space overdensities. This implies that the large-scale stellar environment of a planetary system is a key factor setting the planet radius distribution. We discuss how models for the radius valley might be revised following our findings and conclude that a multi-scale, multi-physics scenario is needed, connecting planet formation and evolution, star and stellar cluster formation, and galaxy evolution.