论文标题
耦合聚类方法的自动分化
Automatic differentiation for coupled cluster methods
论文作者
论文摘要
自动分化是用于计算给定函数到机器精度的数值计算衍生物的工具。该工具可用于量子化学方法,该方法需要计算梯度以最大程度地减少波函数参数,或计算计算分子对外部扰动的响应。本文中,我们使用双打方法将自动分化应用于耦合群集,其中通过最小化能量拉格朗日来获得波函数参数。这种方法的好处是,可以在不实施通常的L方程式的情况下获得L幅度,从而将编码工作减少了大约两个因素。我们还表明,仅使用自动分化的代码只有几行,可以将耦合群集级别的激发能加入。我们进一步将自动分化与双重组分耦合簇一起使用Doubles方法,该方法可以机械地处理多种类型的粒子,例如电子和质子。这种方法对于原型制作,调试和测试多组分量子化学方法特别有用,因为在此新兴领域中参考和基准数据受到限制。
Automatic differentiation is a tool for numerically calculating derivatives of a given function up to machine precision. This tool is useful for quantum chemistry methods, which require the calculation of gradients either for the minimization of the energy with respect to wave function parameters or for the calculation of molecular responses to external perturbations. Herein, we apply automatic differentiation to the coupled cluster with doubles method, in which the wave function parameters are obtained by minimizing the energy Lagrangian. The benefit of this approach is that the l amplitudes can be obtained without implementation of the usual L-equations, thereby reducing the coding effort by approximately a factor of two. We also show that the excitation energies at the coupled cluster level can be ontained with only a few lines of the code using automatic differentiation. We further apply automatic differentiation to the multicomponent coupled cluster with doubles method, which treats more than one type of particle, such as electrons and protons, quantum mechanically. This approach will be especially useful for prototyping, debugging, and testing multicomponent quantum chemistry methods because reference and benchmark data are limited in this emerging field.