论文标题

Sasaki Einstein的线性不稳定性和几乎平行的$ {\ rm G} _2 $歧管

Linear Instability of Sasaki Einstein and nearly parallel ${\rm G}_2$ manifolds

论文作者

Semmelmann, Uwe, Wang, Changliang, Wang, M. Y. -K.

论文摘要

在本文中,我们研究了爱因斯坦爱因斯坦指标的稳定性问题,以及完全几乎平行的$ {\ rm g} _2 $歧管。在Sasaki情况下,如果第二个Betti数为正,则显示线性不稳定性。同样,我们证明了几乎平行的$ \ rm g_2 $歧管,其阳性第三贝蒂号是线性不稳定的。此外,我们证明了Berger Space $ {\ rm so}(5)/{\ rm so}(3)_ {Irr} $的线性不稳定性,这是一个$ 7 $ - 二维的同源性领域,具有适当的几乎并行$ {\ rm G} _2 $结构。

In this article we study the stability problem for the Einstein metrics on Sasaki Einstein and on complete nearly parallel ${\rm G}_2$ manifolds. In the Sasaki case we show linear instability if the second Betti number is positive. Similarly we prove that nearly parallel $\rm G_2$ manifolds with positive third Betti number are linearly unstable. Moreover, we prove linear instability for the Berger space ${\rm SO}(5)/{\rm SO}(3)_{irr} $ which is a $7$-dimensional homology sphere with a proper nearly parallel ${\rm G}_2$ structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源