论文标题
在较弱的图表上
On weak metric dimension of digraphs
论文作者
论文摘要
使用两条距离,我们介绍了强烈连接的Digraph $γ$的弱度量尺寸的概念。我们首先使用$γ$的直径和弱度量尺寸来为$γ$的弧数建立下限和上限,并表征所有达到上层或上限的所有挖掘物。然后,我们研究了一个弱度量$ 1 $的挖掘图,并对所有顶点传播的挖掘图进行分类,公制尺寸较弱,$ 1 $。最后,确定了所有订单$ n $的digraphs $ n $ n $ n-1 $ $ n-1 $或$ n-2 $。
Using the two way distance, we introduce the concepts of weak metric dimension of a strongly connected digraph $Γ$. We first establish lower and upper bounds for the number of arcs in $Γ$ by using the diameter and weak metric dimension of $Γ$, and characterize all digraphs attaining the lower or upper bound. Then we study a digraph with weak metric dimension $1$ and classify all vertex-transitive digraphs having weak metric dimension $1$. Finally, all digraphs of order $n$ with weak metric dimension $n-1$ or $n-2$ are determined.