论文标题

DERF:分解的辐射场

DeRF: Decomposed Radiance Fields

论文作者

Rebain, Daniel, Jiang, Wei, Yazdani, Soroosh, Li, Ke, Yi, Kwang Moo, Tagliasacchi, Andrea

论文摘要

随着神经辐射场(NERF)的出现,神经网络现在可以以愚弄人眼的质量来对3D场景进行新颖的观点。但是,生成这些图像在计算上非常密集,从而限制了它们在实际情况下的适用性。在本文中,我们提出了一种基于能够缓解此问题的空间分解的技术。我们的主要观察结果是,采用更大(更深入和/或更广泛的)网络的回报率降低。因此,我们建议在空间分解场景并为每个分解部分专用较小的网络。当一起工作时,这些网络可以渲染整个场景。无论分解零件的数量多少,这都使我们近乎定义的推理时间。此外,我们表明,为此目的,沃罗诺(Voronoi)空间分解是可取的,因为它与画家的算法相兼容,以进行有效且易于GPU友好的渲染。我们的实验表明,对于实际场景,我们的方法比NERF(具有相同的渲染质量)或PSNR中最高1.0〜db(以相同的推论成本)提高了最高3倍的推理。

With the advent of Neural Radiance Fields (NeRF), neural networks can now render novel views of a 3D scene with quality that fools the human eye. Yet, generating these images is very computationally intensive, limiting their applicability in practical scenarios. In this paper, we propose a technique based on spatial decomposition capable of mitigating this issue. Our key observation is that there are diminishing returns in employing larger (deeper and/or wider) networks. Hence, we propose to spatially decompose a scene and dedicate smaller networks for each decomposed part. When working together, these networks can render the whole scene. This allows us near-constant inference time regardless of the number of decomposed parts. Moreover, we show that a Voronoi spatial decomposition is preferable for this purpose, as it is provably compatible with the Painter's Algorithm for efficient and GPU-friendly rendering. Our experiments show that for real-world scenes, our method provides up to 3x more efficient inference than NeRF (with the same rendering quality), or an improvement of up to 1.0~dB in PSNR (for the same inference cost).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源