论文标题
太大,太小还是正确?对密度功能理论的基准评估,用于预测小化学系统的电子密度的空间范围
Too big, too small or just right? A benchmark assessment of density functional theory for predicting the spatial extent of the electron density of small chemical systems
论文作者
论文摘要
多极矩是能量对电场强度空间衍生物的一阶响应。因此,密度功能理论(DFT)的分子多产矩的质量在建模电子密度本身时的误差以及描述与外部电场相互作用的分子时的性能。但是,只有最低的非零矩在翻译上不变,使高阶矩依赖于起源。因此,我们不使用$ 3 \ times 3 $四极矩矩阵,而是利用电子密度的第二个累积量(或空间差异)的翻译不变$ 3 $ 3 $矩阵作为兴趣量(用$ \ nathcal {k} $表示)。 $ {\ Mathcal {K}} $的主要成分是每个轴沿每个轴的电子密度的空间范围的平方。 $ {\ Mathcal {k}} $ $ {\ MATHCAL {K}} $的基准数据集,用于耦合的群集单打和双扰动三倍(CCSD(t))的双重分子(CBSD(t)),并在213个独立$ c}中开发了完整基集(CBS)限制。针对此VAR213数据集评估了47个流行和最近的密度功能的性能。一些功能,尤其是双重混合动力,以及扫描和扫描0产生可靠的第二累积物,尽管某些现代的经验参数化功能会产生更令人失望的性能。对于几乎所有方法,H和BE ATOM尤其具有挑战性,表明未来的功能开发可能会受益于将其密度信息纳入培训或测试协议中。
Multipole moments are the first order responses of the energy to spatial derivatives of the electric field strength. The quality of density functional theory (DFT) prediction of molecular multipole moments thus characterizes errors in modeling the electron density itself, as well as the performance in describing molecules interacting with external electric fields. However, only the lowest non-zero moment is translationally invariant, making the higher order moments origin-dependent. Therefore, instead of using the $3 \times 3$ quadrupole moment matrix, we utilize the translationally invariant $3 \times 3$ matrix of second cumulants (or spatial variances) of the electron density as the quantity of interest (denoted by $\mathcal{K}$). The principal components of ${\mathcal{K}}$ are the square of the spatial extent of the electron density along each axis. A benchmark dataset of the prinicpal components of ${\mathcal{K}}$ for 100 small molecules at the coupled cluster singles and doubles with perturbative triples (CCSD(T)) at the complete basis set (CBS) limit is developed, resulting in 213 independent ${\mathcal{K}}$ components. The performance of 47 popular and recent density functionals is assessed against this Var213 dataset. Several functionals, especially double hybrids, and also SCAN and SCAN0 yield reliable second cumulants, although some modern, empirically parameterized functionals yield more disappointing performance. The H and Be atoms in particular are challenging for nearly all methods, indicating that future functional development could benefit from inclusion of their density information in training or testing protocols.