论文标题
不可压缩的牛顿流体的最佳时空离散化估计值:dirichlet问题
Optimal error estimate for a space-time discretization for incompressible generalized Newtonian fluids: The Dirichlet problem
论文作者
论文摘要
在本文中,我们证明了{溶液具有自然规律性}的最佳误差估计,这些方程式描述了不稳定的剪切流体的不稳定运动。我们考虑了离散化的完整时空半图表方案。关于以前的结果,主要的新颖性是我们直接获得估计值,而无需引入中间的半分化问题,从而可以治疗均匀的Dirichlet边界条件。
In this paper we prove optimal error estimates for {solutions with natural regularity} of the equations describing the unsteady motion of incompressible shear-thinning fluids. We consider a full space-time semi-implicit scheme for the discretization. The main novelty, with respect to previous results, is that we obtain the estimates directly without introducing intermediate semi-discrete problems, which enables the treatment of homogeneous Dirichlet boundary conditions.