论文标题

谐波分支覆盖物和猫($ k $)球的均匀化

Harmonic branched coverings and uniformization of CAT($k$) spheres

论文作者

Breiner, Christine, Mese, Chikako

论文摘要

令$ s $为一个公制$ d $的表面,满足亚历山大洛夫(Alexandrov)意义上的上曲率(即通过三角比较)。我们表明,从表面到$(s,d)$的几乎保形谐波图是一个分支覆盖。结果,如果$(s,d)$同词同等等同于2-sphere $ \ mathbb s^2 $,则它在$ \ Mathbb s^2 $上相当于。

Let $S$ be a surface with a metric $d$ satisfying an upper curvature bound in the sense of Alexandrov (i.e. via triangle comparison). We show that an almost conformal harmonic map from a surface into $(S,d)$ is a branched covering. As a consequence, if $(S,d)$ is homeomorphically equivalent to the 2-sphere $\mathbb S^2$, then it is conformally equivalent to $\mathbb S^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源